Cantitate/Preț
Produs

Advances in Neural Networks - ISNN 2005: Second International Symposium on Neural Networks, Chongqing, China, May 30 - June 1, 2005, Proceedings, Part I: Lecture Notes in Computer Science, cartea 3496

Editat de Jun Wang, Xiaofeng Liao, Zhang Yi
en Limba Engleză Paperback – 17 mai 2005
The three volume set LNCS 3496/3497/3498 constitutes the refereed proceedings of the Second International Symposium on Neural Networks, ISNN 2005, held in Chongqing, China in May/June 2005.
The 483 revised papers presented were carefully reviewed and selected from 1.425 submissions. The papers are organized in topical sections on theoretical analysis, model design, learning methods, optimization methods, kernel methods, component analysis, pattern analysis, systems modeling, signal processing, image processing, financial analysis, control systems, robotic systems, telecommunication networks, incidence detection, fault diagnosis, power systems, biomedical applications, industrial applications, and other applications.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (3) 64777 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 17 mai 2005 64777 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 17 mai 2005 64952 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 17 mai 2005 65396 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 64777 lei

Preț vechi: 80972 lei
-20% Nou

Puncte Express: 972

Preț estimativ în valută:
11461 13372$ 10020£

Carte tipărită la comandă

Livrare economică 17-31 ianuarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540259121
ISBN-10: 3540259120
Pagini: 1112
Ilustrații: XLIX, 1055 p.
Dimensiuni: 155 x 235 x 60 mm
Greutate: 1.2 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Theoretical Analysis.- Model Design.- Learning Methods.- Optimization Methods.- Kernel Methods.- Component Analysis.

Caracteristici

Includes supplementary material: sn.pub/extras