A Study of Braids: Mathematics and Its Applications, cartea 484
Autor Kunio Murasugi, B. Kurpitaen Limba Engleză Paperback – 15 dec 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 373.03 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 15 dec 2010 | 373.03 lei 6-8 săpt. | |
| Hardback (1) | 380.24 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 iun 1999 | 380.24 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.22 lei -
Preț: 379.51 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 20%
Preț: 624.46 lei -
Preț: 380.46 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei -
Preț: 371.00 lei - 15%
Preț: 614.24 lei - 15%
Preț: 629.85 lei - 18%
Preț: 876.15 lei
Preț: 373.03 lei
Puncte Express: 560
Preț estimativ în valută:
66.03€ • 77.03$ • 57.17£
66.03€ • 77.03$ • 57.17£
Carte tipărită la comandă
Livrare economică 26 februarie-12 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789048152452
ISBN-10: 9048152453
Pagini: 288
Ilustrații: X, 277 p.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of hardcover 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9048152453
Pagini: 288
Ilustrații: X, 277 p.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of hardcover 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Introduction & Foundations.- 1. Various types of braids.- 2. A definition of a braid.- 3. An elementary move and braid equivalence.- 4. Braid projection.- 5. Braid permutation, pure braid.- 2. The Braid Group.- 1. Defunition of the braid group.- 2. A presentation for the braid group.- 3. The completeness of the relations.- 4. Elementary properties of the braid group.- 5. A braid invariant.- 3. Word Problem.- 1. Word problem for the braid group.- 2. A solution of the word problem.- 3. A presentation for the pure n-braid group.- 4. Special types of braids.- 1. Mexicar plaits.- 2. Generators of the Mexican plaits.- 3. An algorithm for Mexican plaits.- 4. Examples of the use of the algorithm.- 5. Quotient groups of the braid group.- 1. Sywumetric group and the braid group.- 2. Platoric solids and quotient groups of Bn.- 3. Finite quotient groups of B3.- 4. The firite quotient group B4(3).- 5. The finite quotient group B5(3).- 6. Isotopy of braids.- 1. Equivalence and isotopy.- 2. Words.- 3. Several interpretations of equivalence.- 4. Milnor invariant.- 7. Homotopy braid theory.- 1. Homotopy.- 2. Tangles and homotopy.- 3. Homotopy braid group.- 4. Homotopy braid invariants.- 5. Tangles and braids.- 8. Grom knots to braids.- 1. Knot theory — a quick review.- 2. Quasi-braids.- 3. Braided links.- 4. Alexander’s theorem.- 5. Knot invariants via braid invariants.- 9. Markov’s theorem.- 1. A theorem due to Markov.- 2. Proof of Markov’s theorem — I.- 3. Proof of Markov’s theorem — II.- 4. Applications.- 10. Knot invariants.- 1. Burau representation.- 2. Alexander polynomial.- 3. Jones polynomial.- 4. Alexander versus Jones.- 11. Braid groups on surfaces.- 1. Divac’s Problem.- 2. Braid group on S2.- 3. Braid group on the surface F.- 4. Braid group on P2.- 5. Braidgroup on T2.- 6. Word problem for Bn(S2).- 12. Algebraic equations.- 1. Configuration spaces.- 2. Complete solvability.- Appendix I — Group theory.- 1. Equivalence relation.- 2. Groups and a bit of ring theory.- 3. Free group.- 4. Presentations of groups.- 5. Word problem.- 6. Reidemeister-Schreier method, presentation of a subgroup.- 7. Triangle groups.- Appendix II — Topology.- 1. Fundamental concepts of Topology.- 2. Homotopy.- 3. Fundamental group.- 4. Manifolds.- Appendix III — Symplectic group.- 1. Symplectic group.- Appendix IV.- Appendix V.