A Formal Background to Mathematics 2a: A Critical Approach to Elementary Analysis: Universitext
Autor R. E. Edwardsen Limba Engleză Paperback – 20 oct 1980
Din seria Universitext
- 15%
Preț: 390.04 lei -
Preț: 454.23 lei -
Preț: 409.96 lei - 15%
Preț: 487.81 lei - 17%
Preț: 391.44 lei - 15%
Preț: 522.85 lei -
Preț: 349.10 lei - 15%
Preț: 392.21 lei - 15%
Preț: 426.68 lei -
Preț: 470.62 lei - 19%
Preț: 464.48 lei - 17%
Preț: 462.80 lei -
Preț: 399.23 lei - 15%
Preț: 532.05 lei -
Preț: 389.61 lei - 15%
Preț: 390.04 lei - 15%
Preț: 390.95 lei - 15%
Preț: 391.81 lei -
Preț: 385.01 lei -
Preț: 469.31 lei - 15%
Preț: 466.06 lei -
Preț: 417.96 lei - 15%
Preț: 460.67 lei - 19%
Preț: 451.23 lei -
Preț: 335.93 lei -
Preț: 442.01 lei - 15%
Preț: 398.09 lei - 15%
Preț: 572.89 lei -
Preț: 367.85 lei - 15%
Preț: 456.60 lei - 15%
Preț: 513.20 lei -
Preț: 374.91 lei - 15%
Preț: 476.97 lei - 15%
Preț: 451.40 lei -
Preț: 465.60 lei - 15%
Preț: 618.64 lei - 20%
Preț: 490.60 lei - 15%
Preț: 579.03 lei - 15%
Preț: 565.69 lei -
Preț: 471.15 lei -
Preț: 367.12 lei -
Preț: 475.01 lei -
Preț: 443.31 lei - 20%
Preț: 319.60 lei - 15%
Preț: 455.18 lei - 15%
Preț: 576.22 lei - 15%
Preț: 560.81 lei -
Preț: 398.86 lei - 15%
Preț: 627.01 lei
Preț: 470.11 lei
Preț vechi: 553.07 lei
-15% Nou
Puncte Express: 705
Preț estimativ în valută:
83.20€ • 97.57$ • 72.95£
83.20€ • 97.57$ • 72.95£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387905136
ISBN-10: 0387905138
Pagini: 606
Ilustrații: XLVIII, 606 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.91 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387905138
Pagini: 606
Ilustrații: XLVIII, 606 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.91 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.2 Infinite limits.- VII.3 Subsequences.- VII.4 The Monotone Convergence Principle again.- VII.5 Suprema and infima of sets of real numbers.- VII.6 Exponential and logarithmic functions.- VII.7 The General Principle of Convergence.- VIII: Continuity and Limits of Functions.- and hidden hypotheses.- VIII.1 Continuous functions.- VIII.2 Properties of continuous functions.- VIII.3 General exponential, logarithmic and power functions.- VIII.4 Limit of a function at a point.- VIII.5 Uniform continuity.- VIII.6 Convergence of sequences of functions.- VIII.7 Polynomial approximation.- VIII.8 Another approach to expa.- IX: Convergence of Series.- and hidden hypotheses.- IX.1 Series and their convergence.- IX.2 Absolute and conditional convergence.- IX.3 Decimal expansions.- IX.4 Convergence of series of functions.- X: Differentiation.- and hidden hypotheses.- X.1 Derivatives.- X.2 Rules for differentiation.- X.3 The mean value theorem and its corollaries.- X.4 Primitives.- X.5 Higher order derivatives.- X.6 Extrema and derivatives.- X.7 A differential equation and the exponential function again.- X.8 Calculus in several variables.- XI: Integration.- XI.1 Integration and area.- XI.2 Analytic definition and study of integration.- XI.3 Integrals and primitives.- XI.4 Integration by parts.- XI.5 Integration by change of variable (or by substitution).- XI.6 Termwise integration of sequences of functions.- XI.7 Improper integrals.- XI.8 First order linear differential equations.- XI.9 Integrals in several variables.- XII: Complex Numbers: Complex Exponential and Trigonometric Functions.- XII.1 Definition of complex numbers.- XII.2 Groups, subgroups and homomorphisms.- XII.3 Homomorphisms ofRinto?; complex exponentials.- XII.4 The exponential function with domainC.- XII.5 The trigonometric functions cosine and sine.- XII.6 Further inverse trigonometric functions.- XII.7 The simple harmonic equation.- XII.8 Another differential equation.- XII.9 Matrices and complex numbers.- XII.10 A glance at Fourier series.- XII.11 Linear differential equations with constant coefficients.- XIII: Concerning Approximate Integration.- XIII.1 Quotes from syllabus notes.- XIII.2 Notation and preliminaries.- XIII.3 Precise formulation of statements XIII.1.1 – XIII.1.3.- XIII.4 Some corrected versions.- XIII.5 Falsity of statements XIII.3.1 – XIII.3.3.- XIII.6 The formulas applied to tabulated data.- XIV: Differential Coefficients.- XIV.1 The d-notation and differential coefficients.- XIV.2 The simple harmonic equation.- XV: Lengths of Curves.- XV.1 Quotes and criticisms.- XV.2 Paths.- XV.3 Lengths of paths.- XV.4 Path length as an integral.- XV.5 Ratio of arc length to chord length.- XV.6 Additivity of arc length.- XV.7 Equivalent paths; simple paths.- XV.8 Circular arcs; application to complex exponential and trigonometric functions.- XV.9 Angles and arguments.- XV.10 General remarks about curves.