Cantitate/Preț
Produs

Understanding Regression Assumptions: Quantitative Applications in the Social Sciences, cartea 92

Autor William D. Berry
en Limba Engleză Paperback – 22 apr 1993
Through the use of careful explanation and examples, Berry demonstrates how to consider whether the assumptions of multiple regression are actually satisfied in a particular research project. Beginning with a brief review of the regression assumptions as they are typically presented in text books, he moves on to explore in detail the substantive meaning of each assumption, for example, lack of measurement error, absence of specification error, linearity, homoscedasticity and lack of autocorrelation.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 30875 lei  6-8 săpt.
  SAGE Publications – 22 apr 1993 30875 lei  6-8 săpt.
Electronic book text (1) 11433 lei  Precomandă
  SAGE Publications – 29 apr 1993 11433 lei  Precomandă

Din seria Quantitative Applications in the Social Sciences

Preț: 30875 lei

Nou

Puncte Express: 463

Preț estimativ în valută:
5464 6371$ 4797£

Carte tipărită la comandă

Livrare economică 16-30 ianuarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780803942639
ISBN-10: 080394263X
Pagini: 104
Ilustrații: illustrations
Dimensiuni: 140 x 216 x 6 mm
Greutate: 0.13 kg
Ediția:Will Be Reissue.
Editura: SAGE Publications
Colecția Sage Publications, Inc
Seria Quantitative Applications in the Social Sciences

Locul publicării:Thousand Oaks, United States

Cuprins

Introduction
A Formal Presentation of the Regression Assumptions
A `Weighty' Illustration
The Consequences of the Regression Assumptions Being Satisfied
The Substantive Meaning of Regression Assumptions
Conclusion

Notă biografică


Descriere

Through the use of careful explanation and examples, Berry demonstrates how to consider whether the assumptions of multiple regression are actually satisfied in a particular research project. Beginning with a brief review of the regression assumptions as they are typically presented in text books, he moves on to explore in detail the substantive meaning of each assumption; for example, lack of measurement error, absence of specification error, linearity, homoscedasticity, and lack of auto-correlation.