Cantitate/Preț
Produs

Topology of Gauge Fields and Condensed Matter

Autor M. Monastyrsky
en Limba Engleză Paperback – 29 mai 2013
''Intended mainly for physicists and mathematicians...its high quality will definitely attract a wider audience.'' ---Computational Mathematics and Mathematical Physics This work acquaints the physicist with the mathematical principles of algebraic topology, group theory, and differential geometry, as applicable to research in field theory and the theory of condensed matter. Emphasis is placed on the topological structure of monopole and instanton solution to the Yang-Mills equations, the description of phases in superfluid 3He, and the topology of singular solutions in 3He and liquid crystals.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 91558 lei  6-8 săpt.
  Springer Us – 29 mai 2013 91558 lei  6-8 săpt.
Hardback (1) 92314 lei  6-8 săpt.
  Springer Us – 30 mai 1993 92314 lei  6-8 săpt.

Preț: 91558 lei

Preț vechi: 111657 lei
-18% Nou

Puncte Express: 1373

Preț estimativ în valută:
16199 19044$ 14188£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781489924056
ISBN-10: 1489924051
Pagini: 376
Ilustrații: IV, 372 p.
Dimensiuni: 178 x 254 x 20 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

''Intended mainly for physicists and mathematicians...its high quality will definitely attract a wider audience.'' ---Computational Mathematics and Mathematical Physics This work acquaints the physicist with the mathematical principles of algebraic topology, group theory, and differential geometry, as applicable to research in field theory and the theory of condensed matter. Emphasis is placed on the topological structure of monopole and instanton solution to the Yang-Mills equations, the description of phases in superfluid 3He, and the topology of singular solutions in 3He and liquid crystals.

Cuprins

1. Preliminaries in Mathematical Setting. Basics.- 2. Elements of Topology. How Two Given Manifolds Can be Differentiated.- 3. Physical Principles and Structures.- 4. Topology of Gauge Fields.- 5. Topology of Condensed Matter.- 6. Conclusion.- References.