The Method of Newton’s Polyhedron in the Theory of Partial Differential Equations: Mathematics and its Applications, cartea 86
Autor S.G. Gindikin, L. Volevichen Limba Engleză Hardback – 30 noi 1992
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 372.67 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 27 sep 2012 | 372.67 lei 6-8 săpt. | |
| Hardback (1) | 380.09 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 noi 1992 | 380.09 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei -
Preț: 419.52 lei - 15%
Preț: 420.02 lei - 15%
Preț: 434.03 lei - 15%
Preț: 680.49 lei -
Preț: 435.00 lei -
Preț: 438.14 lei -
Preț: 430.56 lei - 18%
Preț: 1014.51 lei -
Preț: 461.04 lei - 20%
Preț: 737.41 lei - 15%
Preț: 411.63 lei - 18%
Preț: 1186.02 lei -
Preț: 437.94 lei - 20%
Preț: 373.35 lei - 18%
Preț: 702.82 lei -
Preț: 462.26 lei - 18%
Preț: 705.75 lei - 20%
Preț: 486.11 lei -
Preț: 471.35 lei - 18%
Preț: 705.56 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei -
Preț: 379.15 lei - 15%
Preț: 627.01 lei - 20%
Preț: 626.38 lei - 15%
Preț: 625.09 lei
Preț: 380.09 lei
Nou
Puncte Express: 570
Preț estimativ în valută:
67.28€ • 78.73$ • 58.86£
67.28€ • 78.73$ • 58.86£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792320371
ISBN-10: 0792320379
Pagini: 266
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792320379
Pagini: 266
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Two-sided estimates for polynomials related to Newton’s polygon and their application to studying local properties of partial differential operators in two variables.- §1. Newton’s polygon of a polynomial in two variables.- §2. Polynomials admitting of two-sided estimates.- §3. N Quasi-elliptic polynomials in two variables.- §4. N Quasi-elliptic differential operators.- Appendix to §4.- 2. Parabolic operators associated with Newton’s polygon.- §1. Polynomials correct in Petrovski?’s sense.- §2. Two-sided estimates for polynomials in two variables satisfying Petrovski?’s condition. N-parabolic polynomials.- §3. Cauchy’s problem for N-stable correct and N-parabolic differential operators in the case of one spatial variable.- §4. Stable-correct and parabolic polynomials in several variables.- §5. Cauchy’s problem for stable-correct differential operators with variable coefficients.- 3. Dominantly correct operators.- §1. Strictly hyperbolic operators.- §2. Dominantly correct polynomials in two variables.- §3. Dominantly correct differential operators with variable coefficients (the case of two variables).- §4. Dominantly correct polynomials and the corresponding differential operators (the case of several spatial variables).- 4. Operators of principal type associated with Newton’s polygon.- §1. Introduction. Operators of principal and quasi-principal type.- §2. Polynomials of N-principal type.- §3. The main L2 estimate for operators of N-principal type.- Appendix to §3.- §4. Local solvability of differential operators of N-principal type.- Appendix to §4.- 5. Two-sided estimates in several variables relating to Newton’s polyhedra.- §1. Estimates for polynomials in ?n relating to Newton’s polyhedra.- §2. Two-sided estimates insome regions in ?n relating to Newton’s polyhedron. Special classes of polynomials and differential operators in several variables.- 6. Operators of principal type associated with Newton’s polyhedron.- §1. Polynomials of N-principal type.- §2. Estimates for polynomials of N-principal type in regions of special form.- §3. The covering of ?n by special regions associated with Newton’s polyhedron.- §4. Differential operators of ?n-principal type with variable coefficients.- Appendix to §4.- 7. The method of energy estimates in Cauchy’s problem §1. Introduction. The functional scheme of the proof of the solvability of Cauchy’s problem.- §2. Sufficient conditions for the existence of energy estimates.- §3. An analysis of conditions for the existence of energy estimates.- §4. Cauchy’s problem for dominantly correct differential operators.- References.