The Mathematics Of Generalization
Editat de David. H Wolperten Limba Engleză Hardback – 7 mai 2019
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 477.59 lei 43-57 zile | |
| CRC Press – 1995 | 477.59 lei 43-57 zile | |
| Hardback (1) | 1024.66 lei 43-57 zile | |
| CRC Press – 7 mai 2019 | 1024.66 lei 43-57 zile |
Preț: 1024.66 lei
Preț vechi: 1249.59 lei
-18% Nou
Puncte Express: 1537
Preț estimativ în valută:
181.29€ • 211.21$ • 158.31£
181.29€ • 211.21$ • 158.31£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367320515
ISBN-10: 0367320517
Pagini: 460
Dimensiuni: 152 x 229 mm
Greutate: 0.78 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0367320517
Pagini: 460
Dimensiuni: 152 x 229 mm
Greutate: 0.78 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Cuprins
About the Santa Fe Institute -- Santa Fe Institute Studies in the Sciences of Complexity -- Preface -- The Status of Supervised Learning Science Circa 1994: The Search for a Consensus -- Reflections After Refereeing Papers for NIPS -- The Probably Approximately Correct (PAC) and Other Learning Models -- Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications -- The Relationship Between PAC, the Statistical Physics Framework, the Bayesian Framework, and the VC Framework -- Statistical Physics Models of Supervised Learning -- On Exhaustive Learning -- A Study of Maximal-Coverage Learning Algorithms -- On Bayesian Model Selection -- Soft Classification, a.k.a. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis of Variance -- Current Research -- Preface to “Simplifying Neural Networks by Soft Weight Sharing” -- Simplifying Neural Networks by Soft Weight Sharing -- Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs -- Image Segmentation and Recognition
Descriere
This book provides different mathematical frameworks for addressing supervised learning. It is based on a workshop held under the auspices of the Center for Nonlinear Studies at Los Alamos and the Santa Fe Institute in the summer of 1992.