Cantitate/Preț
Produs

The Inverse Gaussian Distribution: Theory: Methodology, and Applications: Statistics: A Series of Textbooks and Monographs

Autor Raj Chhikara, J. Leroy Folks
en Limba Engleză Paperback – 18 dec 2020
This monograph is a compilation of research on the inverse Gaussian distribution. It emphasizes the presentation of the statistical properties, methods, and applications of the two-parameter inverse Gaussian family of distribution. It is useful to statisticians and users of statistical distribution.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36344 lei  43-57 zile
  CRC Press – 18 dec 2020 36344 lei  43-57 zile
Hardback (1) 185235 lei  43-57 zile
  CRC Press – 29 sep 1988 185235 lei  43-57 zile

Din seria Statistics: A Series of Textbooks and Monographs

Preț: 36344 lei

Preț vechi: 51641 lei
-30% Nou

Puncte Express: 545

Preț estimativ în valută:
6431 7541$ 5648£

Carte tipărită la comandă

Livrare economică 16 februarie-02 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367451264
ISBN-10: 0367451263
Pagini: 232
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Statistics: A Series of Textbooks and Monographs

Locul publicării:Boca Raton, United States

Public țintă

Academic, Postgraduate, and Professional

Cuprins

1. Introduction 2. Properties of the Inverse Gaussian Distribution 3. Genesis 4. Certain Useful Transformations and Characterizations 5. Sampling and Estimation of Parameters 6. Significance Tests 7. Bayesian Inference 8. Regression Analysis 9. Life Testing and Reliability 10. Applications 11. Additional Topics

Notă biografică

Raj Chhikara is emeritus professor at UHCL. 

Descriere

This monograph is a compilation of research on the inverse Gaussian distribution. It emphasizes the presentation of the statistical properties, methods, and applications of the two-parameter inverse Gaussian family of distribution. It is useful to statisticians and users of statistical distribution.