Sub-Riemannian Geometry
Editat de Andre Bellaiche, Jean-Jaques Risleren Limba Engleză Paperback – 18 oct 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 622.55 lei 6-8 săpt. | |
| birkhäuser – 18 oct 2011 | 622.55 lei 6-8 săpt. | |
| Hardback (1) | 627.31 lei 6-8 săpt. | |
| Birkhäuser Basel – 26 sep 1996 | 627.31 lei 6-8 săpt. |
Preț: 622.55 lei
Preț vechi: 732.42 lei
-15% Nou
Puncte Express: 934
Preț estimativ în valută:
110.16€ • 129.18$ • 96.75£
110.16€ • 129.18$ • 96.75£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034899468
ISBN-10: 3034899467
Pagini: 408
Ilustrații: VIII, 398 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: birkhäuser
Locul publicării:Basel, Switzerland
ISBN-10: 3034899467
Pagini: 408
Ilustrații: VIII, 398 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: birkhäuser
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
The tangent space in sub-Riemannian geometry.- § 1. Sub-Riemannian manifolds.- § 2. Accessibility.- § 3. Two examples.- § 4. Privileged coordinates.- § 5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.- § 6. Gromov’s notion of tangent space.- § 7. Distance estimates and the metric tangent space.- § 8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- § 0. Basic definitions, examples and problems.- § 1. Horizontal curves and small C-C balls.- § 2. Hypersurfaces in C-C spaces.- § 3. Carnot-Carathéodory geometry of contact manifolds.- § 4. Pfaffian geometry in the internal light.- § 5. Anisotropic connections.- References.- Survey of singular geodesics.- § 1. Introduction.- § 2. The example and its properties.- § 3. Some open questions.- § 4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.- § 1. Introduction.- § 2. Sub-Riemannian manifolds and abnormal extremals.- § 3. Abnormal extremals in dimension 4.- § 4. Optimality.- § 5. An optimality lemma.- § 6. End of the proof.- § 7. Strict abnormality.- § 8. Conclusion.- References.- Stabilization of controllable systems.- § 0. Introduction.- § 1. Local controllability.- § 2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.- § 3. Necessary conditions for local stabilizability by means of stationary feedback laws.- § 4. Stabilization by means of time-varying feedback laws.- § 5. Return method and controllability.- References.