Cantitate/Preț
Produs

Stochastic PDEs and Dynamics

Autor Boling Guo, Xueke Pu, Hongjun Gao
en Limba Engleză Hardback – 21 noi 2016
This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science.
Contents:
Preliminaries
The stochastic integral and It formula
OU processes and SDEs
Random attractors
Applications
Bibliography
Index
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (1) 99173 lei  43-57 zile
  De Gruyter – 21 noi 2016 99173 lei  43-57 zile
Electronic book text (1) 73269 lei  Precomandă
  De Gruyter – 9 oct 2016 73269 lei  Precomandă

Preț: 99173 lei

Preț vechi: 128797 lei
-23% Nou

Puncte Express: 1488

Preț estimativ în valută:
17547 20442$ 15322£

Carte tipărită la comandă

Livrare economică 19 ianuarie-02 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783110495102
ISBN-10: 3110495104
Pagini: 228
Ilustrații: 30 Schwarz-Weiß- Abbildungen, 10 Schwarz-Weiß- Tabellen
Dimensiuni: 175 x 246 x 18 mm
Greutate: 0.57 kg
Editura: De Gruyter

Notă biografică

Boling Guo, Inst. of Applied Physics & Computational Maths; Hongjun Gao, Nanjing Normal Univ.; Xueke Pu, Chongqing Univ., China.

Cuprins

Table of Content:
Chapter 1 Preliminaries
1.1 Preliminaries in probability
1.2 Preliminaries of stochastic process
1.3 Martingale
1.4 Wiener process and Brown motion
1.5 Poisson process
1.6 Levy process
1.7 The fractional Brownian motion
Chapter 2 The stochastic integral and Ito formula
2.1 Stochastic integral
2.2 Ito formula
2.3 The infnite dimensional case
2.4 Nuclear operator and Hilbert-Schmidt operator
Chapter 3 OU processes and SDEs
3.1 Ornstein-Uhlenbeck processes
3.2 Linear SDEs
3.3 Nonlinear SDEs
Chapter 4 Random attractors
4.1 Determinate nonautonomous systems
4.2 Stochastic dynamical systems
Chapter 5 Applications
5.1 Stochastic Ginzburg-Landau equation
5.2 Ergodicity for SGL with degenerate noise
5.3 Stochastic damped forced Ostrovsky equation
5.4 Simplifed quasi geostrophic model
5.5 Stochastic primitive equations
References