Stochastic PDEs and Dynamics
Autor Boling Guo, Hongjun Gao, Xueke Puen Limba Engleză Electronic book text – 9 oct 2016
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (1) | 991.73 lei 6-8 săpt. | |
| De Gruyter – 21 noi 2016 | 991.73 lei 6-8 săpt. | |
| Electronic book text (1) | 732.69 lei Precomandă | |
| De Gruyter – 9 oct 2016 | 732.69 lei Precomandă |
Preț: 732.69 lei
Preț vechi: 1003.68 lei
-27% Precomandă
Puncte Express: 1099
Preț estimativ în valută:
129.63€ • 151.02$ • 113.20£
129.63€ • 151.02$ • 113.20£
Nepublicat încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783110492439
ISBN-10: 3110492431
Pagini: 200
Editura: De Gruyter
Colecția De Gruyter
Locul publicării:Berlin/Boston
ISBN-10: 3110492431
Pagini: 200
Editura: De Gruyter
Colecția De Gruyter
Locul publicării:Berlin/Boston
Notă biografică
Boling Guo, Beijing Inst. of Applied Physics & Computational Maths, Hongjun Gao, Nanjing Normal Univ., Xueke Pu, Chongqing Univ., China
Cuprins
Table of Content:
Chapter 1 Preliminaries
1.1 Preliminaries in probability
1.2 Preliminaries of stochastic process
1.3 Martingale
1.4 Wiener process and Brown motion
1.5 Poisson process
1.6 Levy process
1.7 The fractional Brownian motion
Chapter 2 The stochastic integral and Ito formula
2.1 Stochastic integral
2.2 Ito formula
2.3 The infnite dimensional case
2.4 Nuclear operator and Hilbert-Schmidt operator
Chapter 3 OU processes and SDEs
3.1 Ornstein-Uhlenbeck processes
3.2 Linear SDEs
3.3 Nonlinear SDEs
Chapter 4 Random attractors
4.1 Determinate nonautonomous systems
4.2 Stochastic dynamical systems
Chapter 5 Applications
5.1 Stochastic Ginzburg-Landau equation
5.2 Ergodicity for SGL with degenerate noise
5.3 Stochastic damped forced Ostrovsky equation
5.4 Simplifed quasi geostrophic model
5.5 Stochastic primitive equations
References
Chapter 1 Preliminaries
1.1 Preliminaries in probability
1.2 Preliminaries of stochastic process
1.3 Martingale
1.4 Wiener process and Brown motion
1.5 Poisson process
1.6 Levy process
1.7 The fractional Brownian motion
Chapter 2 The stochastic integral and Ito formula
2.1 Stochastic integral
2.2 Ito formula
2.3 The infnite dimensional case
2.4 Nuclear operator and Hilbert-Schmidt operator
Chapter 3 OU processes and SDEs
3.1 Ornstein-Uhlenbeck processes
3.2 Linear SDEs
3.3 Nonlinear SDEs
Chapter 4 Random attractors
4.1 Determinate nonautonomous systems
4.2 Stochastic dynamical systems
Chapter 5 Applications
5.1 Stochastic Ginzburg-Landau equation
5.2 Ergodicity for SGL with degenerate noise
5.3 Stochastic damped forced Ostrovsky equation
5.4 Simplifed quasi geostrophic model
5.5 Stochastic primitive equations
References