Cantitate/Preț
Produs

Stochastic PDEs and Dynamics

Autor Boling Guo, Hongjun Gao, Xueke Pu
en Limba Engleză Electronic book text – 9 oct 2016
The book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigors mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (1) 99173 lei  6-8 săpt.
  De Gruyter – 21 noi 2016 99173 lei  6-8 săpt.
Electronic book text (1) 73269 lei  Precomandă
  De Gruyter – 9 oct 2016 73269 lei  Precomandă

Preț: 73269 lei

Preț vechi: 100368 lei
-27% Precomandă

Puncte Express: 1099

Preț estimativ în valută:
12963 15102$ 11320£

Nepublicat încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783110492439
ISBN-10: 3110492431
Pagini: 200
Editura: De Gruyter
Colecția De Gruyter
Locul publicării:Berlin/Boston

Notă biografică

Boling Guo, Beijing Inst. of Applied Physics & Computational Maths, Hongjun Gao, Nanjing Normal Univ., Xueke Pu, Chongqing Univ., China

Cuprins

Table of Content:
Chapter 1 Preliminaries
1.1 Preliminaries in probability
1.2 Preliminaries of stochastic process
1.3 Martingale
1.4 Wiener process and Brown motion
1.5 Poisson process
1.6 Levy process
1.7 The fractional Brownian motion
Chapter 2 The stochastic integral and Ito formula
2.1 Stochastic integral
2.2 Ito formula
2.3 The infnite dimensional case
2.4 Nuclear operator and Hilbert-Schmidt operator
Chapter 3 OU processes and SDEs
3.1 Ornstein-Uhlenbeck processes
3.2 Linear SDEs
3.3 Nonlinear SDEs
Chapter 4 Random attractors
4.1 Determinate nonautonomous systems
4.2 Stochastic dynamical systems
Chapter 5 Applications
5.1 Stochastic Ginzburg-Landau equation
5.2 Ergodicity for SGL with degenerate noise
5.3 Stochastic damped forced Ostrovsky equation
5.4 Simplifed quasi geostrophic model
5.5 Stochastic primitive equations
References