Statistical Mechanics of Neural Networks: Proceedings of the XIth Sitges Conference Sitges, Barcelona, Spain, 3–7 June 1990: Lecture Notes in Physics, cartea 368
Editat de Luis Garridoen Limba Engleză Paperback – 23 aug 2014
Din seria Lecture Notes in Physics
-
Preț: 295.89 lei -
Preț: 336.24 lei - 19%
Preț: 458.83 lei - 15%
Preț: 388.63 lei -
Preț: 390.14 lei - 15%
Preț: 462.85 lei - 15%
Preț: 459.87 lei - 15%
Preț: 461.03 lei - 15%
Preț: 495.65 lei - 15%
Preț: 568.19 lei -
Preț: 462.26 lei - 15%
Preț: 481.20 lei - 15%
Preț: 533.34 lei -
Preț: 296.85 lei -
Preț: 349.82 lei - 15%
Preț: 460.02 lei -
Preț: 307.74 lei -
Preț: 463.19 lei -
Preț: 295.69 lei - 15%
Preț: 389.63 lei - 20%
Preț: 488.09 lei -
Preț: 472.34 lei -
Preț: 389.88 lei - 15%
Preț: 629.66 lei -
Preț: 392.47 lei - 15%
Preț: 390.30 lei -
Preț: 335.22 lei -
Preț: 335.56 lei -
Preț: 284.87 lei - 19%
Preț: 531.23 lei - 15%
Preț: 570.85 lei - 15%
Preț: 507.83 lei -
Preț: 474.28 lei - 15%
Preț: 461.94 lei - 15%
Preț: 392.35 lei - 15%
Preț: 423.25 lei - 15%
Preț: 458.89 lei -
Preț: 295.50 lei - 15%
Preț: 532.69 lei - 15%
Preț: 426.98 lei - 15%
Preț: 425.52 lei - 15%
Preț: 495.70 lei - 15%
Preț: 424.92 lei -
Preț: 329.84 lei - 18%
Preț: 698.49 lei - 18%
Preț: 818.90 lei -
Preț: 333.50 lei - 15%
Preț: 682.21 lei -
Preț: 434.49 lei
Preț: 387.47 lei
Nou
Puncte Express: 581
Preț estimativ în valută:
68.57€ • 80.42$ • 60.13£
68.57€ • 80.42$ • 60.13£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662137857
ISBN-10: 3662137852
Pagini: 484
Ilustrații: VI, 477 p.
Dimensiuni: 170 x 244 x 25 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662137852
Pagini: 484
Ilustrații: VI, 477 p.
Dimensiuni: 170 x 244 x 25 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
On the statistical-mechanical formulation of neural networks.- Model neurons: From Hodgkin-Huxley to hopfield.- Statistical mechanics for networks of analog neurons.- Properties of neural networks with multi-state neurons.- Adaptive recurrent neural networks and dynamic stability.- Neuronal oscillators: Experiments and models.- Neuronal networks in the hippocampus involved in memory.- Basins of attraction and spurious states in neural networks.- Tailoring the performance of attractor neural networks.- Learning and optimization.- Statistical dynamics of learning.- Learning and retrieving marked patterns.- Learning algorithm for binary synapses.- Statistical mechanics of the perceptron with maximal stability.- Simulation and hardware implementation of competitive learning neural networks.- Learning in multilayer networks: A geometric computational approach.- Storage capacity of diluted neural networks.- Dynamics and storage capacity of neural networks with sign-constrained weights.- The neural basis of the locomotion of nematodes.- Reversibility in neural processing systems.- Lyapunov functional for neural networks with delayed interactions and statistical mechanics of temporal associations.- Semi-local signal processing in the visual system.- Statistical mechanics and error-correcting codes.- Synergetic computers — An alternative to neurocomputers.- Dynamics of the Kohonen map.- Equivalence between connectionist classifiers and logical classifiers.- On Potts-glass neural networks with biased patterns.- Ising-spin neural networks with spatial structure.- Kinetically disordered lattice systems.- A programming system for implementing neural nets.- An auto-augmenting neural network architecture for diagnostic reasoning.- Formal integrators and neural networks.- Disorderedmodels of acquired dyslexia.- Higher order memories in optimally structured neural networks.- Random Boolean networks for autoassociative memory: Optimization and sequential learning.