Singularities of Differentiable Maps: Volume II Monodromy and Asymptotic Integrals: Monographs in Mathematics, cartea 83
Autor V. I. Arnold, A.N. Varchenko, S.M. Gusein-Zadeen Limba Engleză Paperback – aug 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 378.95 lei 6-8 săpt. | |
| Birkhäuser Boston – oct 2011 | 378.95 lei 6-8 săpt. | |
| Birkhäuser Boston – aug 2012 | 763.49 lei 6-8 săpt. |
Din seria Monographs in Mathematics
- 18%
Preț: 1092.54 lei - 15%
Preț: 570.54 lei - 18%
Preț: 1077.24 lei - 15%
Preț: 622.29 lei - 18%
Preț: 1086.01 lei - 18%
Preț: 1074.51 lei - 15%
Preț: 609.85 lei -
Preț: 432.33 lei - 18%
Preț: 858.10 lei - 18%
Preț: 973.36 lei -
Preț: 371.37 lei - 18%
Preț: 1068.74 lei - 24%
Preț: 799.19 lei -
Preț: 378.95 lei - 15%
Preț: 625.88 lei - 15%
Preț: 619.75 lei -
Preț: 383.03 lei -
Preț: 382.30 lei - 15%
Preț: 623.05 lei - 15%
Preț: 620.68 lei -
Preț: 403.94 lei - 18%
Preț: 926.66 lei - 15%
Preț: 623.70 lei - 18%
Preț: 859.76 lei - 15%
Preț: 639.57 lei - 15%
Preț: 619.61 lei - 18%
Preț: 967.45 lei
Preț: 763.49 lei
Preț vechi: 931.09 lei
-18% Nou
Puncte Express: 1145
Preț estimativ în valută:
135.10€ • 158.42$ • 118.65£
135.10€ • 158.42$ • 118.65£
Carte tipărită la comandă
Livrare economică 10-24 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461284086
ISBN-10: 1461284082
Pagini: 504
Ilustrații: VIII, 492 p. 5 illus.
Dimensiuni: 170 x 244 x 30 mm
Greutate: 0.79 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 1461284082
Pagini: 504
Ilustrații: VIII, 492 p. 5 illus.
Dimensiuni: 170 x 244 x 30 mm
Greutate: 0.79 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
I The topological structure of isolated critical points of functions.- 1 Elements of the theory of Picard-Lefschetz.- 2 The topology of the non-singular level set and the variation operator of a singularity.- 3 The bifurcation sets and the monodromy group of a singularity.- 4 The intersection matrices of singularities of functions of two variables.- 5 The intersection forms of boundary singularities and the topology of complete intersections.- II Oscillatory integrals.- 6 Discussion of results.- 7 Elementary integrals and the resolution of singularities of the phase.- 8 Asymptotics and Newton polyhedra.- 9 The singular index, examples.- III Integrals of holomorphic forms over vanishing cycles.- 10 The simplest properties of the integrals.- 11 Complex oscillatory integrals.- 12 Integrals and differential equations.- 13 The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point.- 14 The mixed Hodge structure of an isolated critical point of a holomorphic function.- 15 The period map and the intersection form.- References.