Scenes from the History of Real Functions: Science Networks. Historical Studies, cartea 7
Autor F.A. Medvedeven Limba Engleză Hardback – 1991
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 614.41 lei 6-8 săpt. | |
| Birkhäuser Basel – 24 oct 2012 | 614.41 lei 6-8 săpt. | |
| Hardback (1) | 620.38 lei 6-8 săpt. | |
| Birkhäuser Basel – 1991 | 620.38 lei 6-8 săpt. |
Din seria Science Networks. Historical Studies
- 18%
Preț: 765.46 lei - 15%
Preț: 627.31 lei - 18%
Preț: 756.68 lei -
Preț: 370.62 lei -
Preț: 470.62 lei - 15%
Preț: 458.47 lei -
Preț: 374.54 lei - 15%
Preț: 672.56 lei - 15%
Preț: 634.86 lei - 15%
Preț: 511.16 lei - 24%
Preț: 984.08 lei -
Preț: 381.19 lei - 18%
Preț: 868.12 lei -
Preț: 367.85 lei -
Preț: 380.24 lei - 15%
Preț: 622.73 lei - 15%
Preț: 675.70 lei - 15%
Preț: 648.68 lei - 15%
Preț: 630.29 lei - 15%
Preț: 625.09 lei - 15%
Preț: 619.91 lei - 15%
Preț: 621.67 lei - 18%
Preț: 1075.56 lei - 18%
Preț: 1195.93 lei - 20%
Preț: 644.44 lei - 20%
Preț: 645.64 lei - 15%
Preț: 624.01 lei - 20%
Preț: 614.30 lei - 15%
Preț: 668.92 lei -
Preț: 383.96 lei - 18%
Preț: 1335.95 lei -
Preț: 390.66 lei - 18%
Preț: 1341.26 lei - 15%
Preț: 617.57 lei - 15%
Preț: 623.22 lei - 15%
Preț: 624.01 lei -
Preț: 377.48 lei
Preț: 620.38 lei
Preț vechi: 729.86 lei
-15% Nou
Puncte Express: 931
Preț estimativ în valută:
109.78€ • 128.02$ • 96.39£
109.78€ • 128.02$ • 96.39£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764325725
ISBN-10: 3764325720
Pagini: 272
Ilustrații: 265 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:1991
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Science Networks. Historical Studies
Locul publicării:Basel, Switzerland
ISBN-10: 3764325720
Pagini: 272
Ilustrații: 265 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:1991
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Science Networks. Historical Studies
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 The place of the theory of functions of a real variable among the mathematical discipline.- 1.1 The subject matter of the theory of functions.- 1.2 Three periods in the development of the theory of functions.- 1.3 The theory of functions and classical analysis.- 1.4 The theory of functions and functional analysis.- 1.5 The theory of functions and other mathematical disciplines.- 2 The history of the concept of a functio.- 2.1 Some textbook definitions of the concept of a function.- 2.2 The concept of a function in ancient times and in the Middle Ages.- 2.3 The seventeenth-century origins of the concept of a function.- 2.4 Some particular approaches to the concept of a function in the seventeenth century.- 2.5 The Eulerian period in the development of the concept of a function.- 2.6 Euler’s contemporaries and heirs.- 2.7 The arbitrariness in a functional correspondence.- 2.8 The Lobachevskii-Dirichlet definition.- 2.9 The extension and enrichment of the concept of a function in the nineteenth century.- 2.10 The definition of a function according to Dedekind.- 2.11 Approaches to the concept of a function from mathematical logic.- 2.12 Set functions.- 2.13 Some other functional correspondences.- 3 Sequences of functions. Various kinds of convergenc.- 3.1 The analytic representation of a function.- 3.2 Simple uniform convergence.- 3.3 Generalized uniform convergence.- 3.4 Arzelà quasiuniform convergence.- 3.5 Convergence almost everywhere.- 3.6 Convergence in measure.- 3.7 Convergence in square-mean. Harnack’s unsuccessful approach.- 3.8 Square-mean convergence. The work of Fischer and certain related investigations.- 3.9 Strong and weak convergence.- 3.10 The Baire classification.- 4 The derivative and the integral in their historical connection.- 4.1 Some generalobservations.- 4.2 Integral and differential methods up to the first half of the seventeenth century.- 4.3 The analysis of Newton and Leibniz.- 4.4 The groundwork for separating the concepts of derivative and integral.- 4.5 The separation of differentiation and integration.- 4.6 The Radon-Nikodým theorem.- 4.7 The relation between differentiation and integration in the works of Kolmogorov.- 4.8 The relation between differentiation and integration in the works of Carathéodory.- 4.9 A few more general remarks.- 5 Nondifferentiable continuous functions.- 5.1 Some introductory remarks.- 5.2 Ampère’s theorem.- 5.3 Doubts and refutations.- 5.4 Classes of nondifferentiable functions.- 5.5 The relative “smallness” of the set of differentiable functions.- Index of names.