Cantitate/Preț
Produs

Ranking Queries on Uncertain Data

Autor Ming Hua, Jian Pei
en Limba Engleză Hardback – 12 apr 2011
Uncertain data is inherent in many important applications, such as environmental surveillance, market analysis, and quantitative economics research. Due to the importance of those applications and rapidly increasing amounts of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task. Ranking queries (also known as top-k queries) are often natural and useful in analyzing uncertain data.
Ranking Queries on Uncertain Data discusses the motivations/applications, challenging problems, the fundamental principles, and the evaluation algorithms of ranking queries on uncertain data. Theoretical and algorithmic results of ranking queries on uncertain data are presented in the last section of this book. Ranking Queries on Uncertain Data is the first book to systematically discuss the problem of ranking queries on uncertain data.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 88693 lei  6-8 săpt.
  Springer – 28 mai 2013 88693 lei  6-8 săpt.
Hardback (1) 89665 lei  6-8 săpt.
  Springer – 12 apr 2011 89665 lei  6-8 săpt.

Preț: 89665 lei

Preț vechi: 112081 lei
-20%

Puncte Express: 1345

Preț estimativ în valută:
15852 18798$ 13750£

Carte tipărită la comandă

Livrare economică 11-25 martie


Specificații

ISBN-13: 9781441993793
ISBN-10: 1441993797
Pagini: 224
Ilustrații: XVI, 224 p.
Dimensiuni: 164 x 244 x 20 mm
Greutate: 0.49 kg
Ediția:2011 edition
Editura: Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Introduction.- Probabilistic Ranking Queries on Uncertain Data.- Related Work.- Top-k Typicality Queries on Uncertain Data.- Probabilistic Ranking Queries on Uncertain Data.- Continuous Ranking Queries on Uncertain Streams.- Ranking Queries on Probabilistic Linkages.- Probabilistic Path Queries on Road Networks.- Conclusions.- References

Caracteristici

Presents challenging problems, the fundamental principles, and the evaluation algorithms of ranking queries on uncertain data Includes efficient and scalable query evaluation algorithms for the ranking queries Covers a comprehensive empirical evaluation of the queries The first book to systematically discuss the problem of ranking queries on uncertain data Includes supplementary material: sn.pub/extras