Physical Models and Equilibrium Methods in Programming and Economics: Mathematics and its Applications, cartea 2
Autor B.S. Razumikhinen Limba Engleză Hardback – 31 oct 1984
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 377.68 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 17 oct 2011 | 377.68 lei 6-8 săpt. | |
| Hardback (1) | 385.79 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 oct 1984 | 385.79 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei - 15%
Preț: 680.49 lei - 20%
Preț: 373.35 lei -
Preț: 419.52 lei -
Preț: 461.04 lei -
Preț: 438.14 lei - 15%
Preț: 618.78 lei - 18%
Preț: 702.82 lei -
Preț: 471.35 lei - 15%
Preț: 434.03 lei - 15%
Preț: 411.63 lei - 18%
Preț: 705.56 lei -
Preț: 430.56 lei - 20%
Preț: 737.41 lei -
Preț: 435.00 lei - 15%
Preț: 615.63 lei - 18%
Preț: 820.79 lei - 18%
Preț: 1186.02 lei -
Preț: 462.26 lei -
Preț: 437.94 lei - 15%
Preț: 678.08 lei - 18%
Preț: 1014.51 lei - 18%
Preț: 705.75 lei - 20%
Preț: 486.11 lei - 15%
Preț: 420.02 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei -
Preț: 379.15 lei
Preț: 385.79 lei
Nou
Puncte Express: 579
Preț estimativ în valută:
68.26€ • 79.52$ • 59.61£
68.26€ • 79.52$ • 59.61£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027716446
ISBN-10: 9027716447
Pagini: 372
Ilustrații: XV, 351 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:1984
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027716447
Pagini: 372
Ilustrații: XV, 351 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:1984
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I: Equilibrium of mechanical systems with linear constraints and linear programming problems.- 1.1. Introduction.- 1.2. Linear equations and inequalities.- 1.3. Systems of linear equations and inequalities.- 1.4. Linear programming problems. Duality theorems.- II: Equilibrium of physical systems and linear programming problems.- 2.1. Introduction.- 2.2. Some concepts from thermodynamics.- 2.3. Physical models of dual pairs of systems of linear equations and inequalities. Alternative theorems.- 2.4. A physical model for linear programming problems. Equilibrium conditions.- 2.5. Penalty methods.- 2.6. Some properties of approximate solutions of dual problems of linear programming problems.- 2.7. Models for transport type problems.- III: The method of redundant constraints and iterative algorithms.- 3.1. Introduction.- 3.2. The method of redundant constraints.- 3.3. The first iterative algorithm for solving linear programming problems and for solving systems of linear equations and inequalities.- 3.4. The second algorithm.- 3.5. Reduction of the general linear programming problem to a sequence of inconsistent systems. The third algorithm.- IV: The principle of removing constraints.- 4.1. Introduction.- 4.2. The method of generalized coordinates.- 4.3. The method of multipliers.- 4.4. Elastic constraints. Penalty function methods.- 4.5. Discussion.- V: The hodograph method.- 5.1. Introduction.- 5.2. The hodograph method for linear programming problems.- 5.3. Solution of the dual problem.- 5.4. Results of numerical experiments.- VI: The method of displacement of elastic constraints.- 6.1. Introduction.- 6.2. The first algorithm.- 6.3 The second algorithm.- 6.4. Combining the algorithms.- VII: Decomposition methods for linear programming problems.- 7.1. Introduction.- 7.2. Decomposition algorithms.- 7.3. Allocation of resources problems.- VIII: Nonlinear programming.- 8.1. Introduction.- 8.2. The principle of virtual displacements and the Kuhn-Tucker theorem.- 8.3. Numerical methods for solving nonlinear programming problems.- IX: The tangent method.- 9.1. Introduction.- 9.2. Constrained minimization problems.- 9.3. Linear programming.- 9.4. Dynamic problems of optimal control.- X: Models for economic equilibrium.- 10.1. Introduction.- 10.2. Equilibrium problems for linear exchange models.- 10.3. An algorithm for solving numerically equilibrium problems for linear exchange economies.- 10.4. Discussion. The Boltzmann principle.- 10.5. Equilibrium of linear economic models.- 10.6 Physical models for economic equilibrium. The equilibrium theorem.- 10.7. An algorithm for solving equilibrium problems for linear economic models.- 10.8. A generalization of the economic equilibrium problem.- XI: Dynamic economic models.- 11.1. Introduction.- 11.2. The Von Neumann-Gale model. Growth rates and interest rates.- 11.3. A method for solving the problem of maximum growth rates.- 11.4. Duality and problems of growth rates and interest rates.- 11.5. The minimal time problem.- 11.6. A time optimal control problem economic growth.- 11.7. A physical model for solving optimal control problems.- 11.8. Decomposition for time optimal control problems.- 11.9. Optimal balanced growth problems.- XII: Optimal control problems.