Perturbation Methods in Non-Linear Systems: Applied Mathematical Sciences, cartea 8
Autor Georgio Eugenio Oscare Giacagliaen Limba Engleză Paperback – 11 dec 1972
Din seria Applied Mathematical Sciences
- 24%
Preț: 818.89 lei - 20%
Preț: 817.22 lei -
Preț: 493.64 lei -
Preț: 489.79 lei -
Preț: 499.19 lei - 18%
Preț: 969.60 lei - 18%
Preț: 713.59 lei -
Preț: 380.26 lei - 15%
Preț: 462.89 lei - 18%
Preț: 764.22 lei - 18%
Preț: 815.14 lei - 18%
Preț: 1771.10 lei - 18%
Preț: 701.95 lei - 18%
Preț: 754.81 lei - 15%
Preț: 678.47 lei - 18%
Preț: 1083.25 lei - 18%
Preț: 923.84 lei - 20%
Preț: 728.29 lei -
Preț: 414.07 lei -
Preț: 382.20 lei - 18%
Preț: 1090.76 lei - 24%
Preț: 874.54 lei - 24%
Preț: 741.98 lei - 18%
Preț: 869.26 lei - 15%
Preț: 471.78 lei - 15%
Preț: 612.44 lei - 18%
Preț: 867.25 lei - 15%
Preț: 574.88 lei - 15%
Preț: 620.13 lei - 15%
Preț: 635.00 lei - 24%
Preț: 1001.05 lei - 18%
Preț: 905.62 lei -
Preț: 527.92 lei -
Preț: 182.75 lei -
Preț: 383.96 lei - 15%
Preț: 618.64 lei - 15%
Preț: 508.48 lei -
Preț: 397.45 lei
Preț: 381.55 lei
Nou
Puncte Express: 572
Preț estimativ în valută:
67.51€ • 79.28$ • 59.26£
67.51€ • 79.28$ • 59.26£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387900544
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387900543
Pagini: 369
Ilustrații: IX, 369 p.
Dimensiuni: 168 x 240 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1972
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Canonical Transformation Theory and Generalizations.- 1. Introduction.- 2. Canonical Transformations.- 3. Hamilton-Jacobi Equation. Generalizations.- 4. Lie Series and Lie Transforms.- 5. Lie Transform Depending on a Parameter.- 6. Equivalence Relations.- 7. General Transformations Induced by Lie Series.- Notes.- References.- II. Perturbation Methods for Hamiltonian Systems. Generalizations.- 1. Introduction.- 2. Convergence of a Classical Method of Iteration.- 3. Secular Terms. Lindstedt’s Device.- 4. Poincaré’s Method (Lindstedt’s Method).- 5. Fast and Slow Variables.- 6. Generalization of the Averaging Procedure, Birkoff’s Normalization and Adelphic Integrals.- 7. The Solution of Poincaré’s Problem in Poisson’s Parentheses. Elimination of Secular Terms from Adelphic Integrals.- 8. Perturbation Techniques Based on Lie Transforms.- 9. Perturbation Methods of Non-Hamiltonian Systems Based on Lie Transforms.- Notes.- References.- III. Perturbations of Integrable Systemsl.- 1. Motion of an Integrable System.- 2. Perturbations of an Integral System.- 3. Degenerate Systems.- 4. Perturbed Linear Oscillations.- 5. Linear Periodic Perturbations.- Notes.- References.- IV. Perturbations of Area Preserving Mappings.- 1. Preliminary Considerations.- 2. Regions of Motion. Perturbation of a Truncated Birkoff’s Normal Form.- 3.Moser’s Theorem.- 4. System with n Degree of Freedom.- 5. Degenerate Systems.- Notes.- References.- V. Resonance.- 1. Introduction.- 2. Motion in the Neighborhood of an Equilibrium Point.- 3. Solution by Formal Series28l.- 4. Equivalence with the Problem of Perturbation of a Linear System.- 5. Nonlinear Resonance.- 6. Asymptotic Expansion to Any Order.- 7. Extended Theory and the Ideal Resonance Problem.- 8. Several Degrees of Freedom.- 9.Coupling of Two Harmonic Oscillators.- Notes.- References.- Appendix. Remarks, Some Open Questions and Research Topics.- References.