Ordinary Differential Equations
Autor Wolfgang Walter Traducere de R. Thompsonen Limba Engleză Paperback – 17 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 444.82 lei 6-8 săpt. | |
| Springer – 17 oct 2012 | 444.82 lei 6-8 săpt. | |
| Hardback (1) | 571.83 lei 6-8 săpt. | |
| Springer – iul 1998 | 571.83 lei 6-8 săpt. |
Preț: 444.82 lei
Puncte Express: 667
Preț estimativ în valută:
78.64€ • 93.26$ • 68.21£
78.64€ • 93.26$ • 68.21£
Carte tipărită la comandă
Livrare economică 11-25 martie
Specificații
ISBN-13: 9781461268345
ISBN-10: 1461268346
Pagini: 400
Ilustrații: XI, 384 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461268346
Pagini: 400
Ilustrații: XI, 384 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
I. First Order Equations: Some Integrable Cases.- § 1. Explicit First Order Equations.- § 2. The Linear Differential Equation. Related Equations.- § 3. Differential Equations for Families of Curves. Exact Equations.- § 4. Implicit First Order Differential Equations.- II: Theory of First Order Differential Equations.- § 5. Tools from Functional Analysis.- § 6. An Existence and Uniqueness Theorem.- § 7. The Peano Existence Theorem.- § 8. Complex Differential Equations. Power Series Expansions.- § 9. Upper and Lower Solutions. Maximal and Minimal Integrals.- III: First Order Systems. Equations of Higher Order.- § 10. The Initial Value Problem for a System of First Order.- § 11. Initial Value Problems for Equations of Higher Order.- § 12. Continuous Dependence of Solutions.- § 13. Dependence of Solutions on Initial Values and Parameters.- IV: Linear Differential Equations.- § 14. Linear Systems.- § 15. Homogeneous Linear Systems.- § 16. Inhomogeneous Systems.- § 17. Systems with Constant Coefficients.- § 18. Matrix Functions. Inhomogeneous Systems.- § 19. Linear Differential Equations of Order n.- § 20. Linear Equations of Order nwith Constant Coefficients.- V: Complex Linear Systems.- § 21. Homogeneous Linear Systems in the Regular Case.- § 22. Isolated Singularities.- § 23. Weakly Singular Points. Equations of Fuchsian Type.- § 24. Series Expansion of Solutions.- § 25. Second Order Linear Equations.- VI: Boundary Value and Eigenvalue Problems.- § 26. Boundary Value Problems.- § 27. The Sturm—Liouville Eigenvalue Problem.- § 28. Compact Self-Adjoint Operators in Hilbert Space.- VII: Stability and Asymptotic Behavior.- § 29. Stability.- § 30. The Method of Lyapunov.- A. Topology.- B. Real Analysis.- C. C0111plex Analysis.- D. FunctionalAnalysis.- Solutions and Hints for Selected Exercises.- Literature.- Notation.