Nonlinear Oscillations and Waves in Dynamical Systems: Mathematics and Its Applications, cartea 360
Autor P.S Landaen Limba Engleză Paperback – 7 dec 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 677.10 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 7 dec 2010 | 677.10 lei 6-8 săpt. | |
| Hardback (1) | 683.40 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 29 feb 1996 | 683.40 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei - 15%
Preț: 568.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 564.25 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei - 15%
Preț: 581.54 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei - 15%
Preț: 679.01 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 15%
Preț: 564.42 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 578.70 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei
Preț: 677.10 lei
Preț vechi: 796.59 lei
-15% Nou
Puncte Express: 1016
Preț estimativ în valută:
119.80€ • 139.78$ • 104.74£
119.80€ • 139.78$ • 104.74£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789048146703
ISBN-10: 9048146704
Pagini: 564
Ilustrații: XV, 544 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.78 kg
Ediția:Softcover reprint of hardcover 1st ed. 1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9048146704
Pagini: 564
Ilustrații: XV, 544 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.78 kg
Ediția:Softcover reprint of hardcover 1st ed. 1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Dynamical systems. Phase space. Stochastic and chaotic systems. The number of degrees of freedom.- 2 Hamiltonian systems close to integrable. Appearance of stochastic motions in Hamiltonian systems.- 3 Attractors and repellers. Reconstruction of attractors from an experimental time series. Quantitative characteristics of attractors.- 4 Natural and forced oscillations and waves. Self-oscillations and auto-waves.- 5 Conservative systems.- 6 Non-conservative Hamiltonian systems and dissipative systems.- 7 Natural oscillations of non-linear oscillators.- 8 Natural oscillations in systems of coupled oscillators.- 9 Natural waves in bounded and unbounded continuous media. Solitons.- 10 Oscillations of a non-linear oscillator excited by an external force.- 11 Oscillations of coupled non-linear oscillators excited by an external periodic force.- 12 Parametric oscillations.- 13 Waves in semibounded media excited by perturbations applied to their boundaries.- 14 Forced oscillations and waves in active non-self-oscillatory systems. Turbulence. Burst instability. Excitation of waves with negative energy.- 15 Mechanisms of excitation and amplitude limitation of self-oscillations and auto-waves. Classification of self-oscillatory systems.- 16 Examples of self-oscillatory systems with lumped parameters. I.- 17 Examples of self-oscillatory systems with lumped parameters. II.- 18 Examples of self-oscillatory systems with high frequency power sources.- 19 Examples of self-oscillatory systems with time delay.- 20 Examples of continuous self-oscillatory systems with lumped active elements.- 21 Examples of self-oscillatory systems with distributed active elements.- 22 Periodic actions on self-oscillatory systems. Synchronization and chaotization of self-oscillations.- 23 Interaction between self-oscillatory systems.- 24 Examples of auto-waves and dissipative structures.- 25 Convective structures and self-oscillations in fluid. The onset of turbulence.- 26 Hydrodynamic and acoustic waves in subsonic jet and separated flows.- Appendix A Approximate methods for solving linear differential equations with slowly varying parameters.- A.1 JWKB Method.- A.2 Asymptotic method.- A.3 The Liouville—Green transformation.- A.4 The Langer transformation.- Appendix B The Whitham method and the stability of periodic running waves for the Klein—Gordon equation.