Cantitate/Preț
Produs

Narrow Operators on Function Spaces and Vector Lattices: de Gruyter Studies in Mathematics, cartea 45

Autor Mikhail Popov, Beata Randrianantoanina
en Limba Engleză Electronic book text – 5 dec 2012
Narrow operators are those operators defined on function spaces which are "small'' at signs, i.e. at {-1,0,1}-valued functions. Numerous works and research papers exist on these, but no coherent monograph yet to place them in context.
This book gives comprehensive treatment of narrow operators. It starts with basics and then systematically builds up the case. It also covers geometrical applications and Gaussian embeddings.
Citește tot Restrânge

Din seria de Gruyter Studies in Mathematics

Preț: 87758 lei

Preț vechi: 120216 lei
-27%

Puncte Express: 1316

Preț estimativ în valută:
15514 18497$ 13456£

Indisponibil temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Specificații

ISBN-13: 9783110263343
ISBN-10: 3110263343
Pagini: 332
Editura: De Gruyter
Colecția De Gruyter
Seria de Gruyter Studies in Mathematics

Locul publicării:Berlin/Boston

Notă biografică

Mikhail Popov, Chernivtsi National University, Ukraine; Miami University, Oxford, USA; Beata Randrianantoanina, Miami University, Oxford, USA.

Cuprins

AD>Chapter 1. Preliminaries Chapter 2. Each small operator is narrow Chapter 3. Applications to the geometry of Lp spaces for 0 < p < 1 5 Chapter 4. A very non-compact narrow operator Chapter 5. Some deep results on narrow operators Chapter 6. Weak embeddings of L1 Chapter 7. For what spaces X every operator T 2 L(Lp;X) is narrow? Chapter 8. Ideal properties of narrow operators Chapter 9. Daugavet type properties of Lorentz spaces with Chapter 10. Narrow operators on vector lattices Chapter 11. Some generalizations of narrow operators Bibliography