Cantitate/Preț
Produs

Multiscale Problems and Methods in Numerical Simulations

Autor James H. Bramble, Albert Cohen, Wolfgang Dahmen Editat de Claudio Canuto
en Limba Engleză Paperback – 22 oct 2003
This volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the common denominator of the "multiscale" or "multilevel" paradigm. This covers the presence of multiple relevant "scales" in a physical phenomenon; the detection and representation of "structures", localized in space or in frequency, in the solution of a mathematical model; the decomposition of a function into "details" that can be organized and accessed in decreasing order of importance; and the iterative solution of systems of linear algebraic equations using "multilevel" decompositions of finite dimensional spaces.
Citește tot Restrânge

Preț: 33629 lei

Nou

Puncte Express: 504

Preț estimativ în valută:
5952 6939$ 5206£

Carte tipărită la comandă

Livrare economică 20 ianuarie-03 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540200994
ISBN-10: 3540200991
Pagini: 184
Ilustrații: XIV, 170 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.29 kg
Ediția:2003
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Preface.- A. Cohen: Theoretical Applied and Computational Aspects of Nonlinear Approximation.- W. Dahmen: Multiscale and Wavelet Methods for Operator Equations.- J. H. Bramble: Multilevel Methods in Finite Elements.

Textul de pe ultima copertă

This volume aims to disseminate a number of new ideas that have emerged in the last few years in the field of numerical simulation, all bearing the common denominator of the "multiscale" or "multilevel" paradigm. This covers the presence of multiple relevant "scales" in a physical phenomenon; the detection and representation of "structures", localized in space or in frequency, in the solution of a mathematical model; the decomposition of a function into "details" that can be organized and accessed in decreasing order of importance; and the iterative solution of systems of linear algebraic equations using "multilevel" decompositions of finite dimensional spaces.