Cantitate/Preț
Produs

Modular Forms and Galois Cohomology: Cambridge Studies in Advanced Mathematics, cartea 69

Autor Haruzo Hida
en Limba Engleză Hardback – 28 iun 2000
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor–Wiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the Taylor–Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 51190 lei  6-8 săpt.
  Cambridge University Press – 13 aug 2008 51190 lei  6-8 săpt.
Hardback (1) 90674 lei  6-8 săpt.
  Cambridge University Press – 28 iun 2000 90674 lei  6-8 săpt.

Din seria Cambridge Studies in Advanced Mathematics

Preț: 90674 lei

Preț vechi: 105434 lei
-14% Nou

Puncte Express: 1360

Preț estimativ în valută:
16048 18820$ 14070£

Carte tipărită la comandă

Livrare economică 24 ianuarie-07 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521770361
ISBN-10: 052177036X
Pagini: 356
Ilustrații: 2 tables
Dimensiuni: 158 x 236 x 28 mm
Greutate: 0.6 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Studies in Advanced Mathematics

Locul publicării:Cambridge, United Kingdom

Cuprins

Preface; 1. Overview of modular forms; 2. Representations of a group; 3. Representations and modular forms; 4. Galois cohomology; 5. Modular L-values and Selmer groups; Bibliography; Subject index; List of statements; List of symbols.

Descriere

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.