Modelling with Words
Editat de Jonathan Lawry, Jimi Shanahan, Anca Ralescuen Limba Engleză Paperback – 10 noi 2003
This book is an authoritative collection of key contributions to the new concept of Modelling with Words. A wide range of issues in systems modelling and analysis is presented, extending from conceptual graphs and fuzzy quantifiers to humanist computing and self-organizing maps. Among the core issues investigated are
- balancing predictive accuracy and high level transparency in learning
- scaling linguistic algorithms to high-dimensional data problems
- integrating linguistic expert knowledge with knowledge derived from data
- identifying sound and useful inference rules
- integrating fuzzy and probabilistic uncertainty in data modelling
Preț: 318.51 lei
Preț vechi: 398.15 lei
-20% Nou
Puncte Express: 478
Preț estimativ în valută:
56.36€ • 66.09$ • 49.50£
56.36€ • 66.09$ • 49.50£
Carte tipărită la comandă
Livrare economică 04-18 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540204879
ISBN-10: 3540204873
Pagini: 248
Ilustrații: XII, 506 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:1991
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540204873
Pagini: 248
Ilustrații: XII, 506 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.38 kg
Ediția:1991
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Random Set-Based Approaches for Modelling Fuzzy Operators.- A General Framework for Induction of Decision Trees under Uncertainty.- Combining Rule Weight Learning and Rule Selection to Obtain Simpler and More Accurate Linguistic Fuzzy Models.- Semantics-Preserving Dimensionality Reduction in Intelligent Modelling.- Conceptual Graphs for Modelling and Computing with Generally Quantified Statements.- Improvement of the Interpretability of Fuzzy Rule Based Systems: Quantifiers, Similarities and Aggregators.- Humanist Computing: Modelling with Words, Concepts, and Behaviours.- A Hybrid Framework Using SOM and Fuzzy Theory for Textual Classification in Data Mining.- Combining Collaborative and Content-Based Filtering Using Conceptual Graphs.- Random Sets and Appropriateness Degrees for Modelling with Labels.- Interpretability Issues in Fuzzy Genetics-Based Machine Learning for Linguistic Modelling.