Measures of Complexity and Chaos: NATO Science Series B:, cartea 208
Editat de Neal B. Abraham, Alfonso M. Albano, Anthony Passamante, Paul E. Rappen Limba Engleză Paperback – 12 iul 2012
Din seria NATO Science Series B:
- 5%
Preț: 1356.03 lei - 5%
Preț: 355.43 lei - 5%
Preț: 1070.41 lei - 5%
Preț: 1382.39 lei - 5%
Preț: 1063.39 lei - 5%
Preț: 1074.07 lei -
Preț: 369.36 lei - 5%
Preț: 1388.77 lei - 5%
Preț: 695.30 lei - 5%
Preț: 1060.90 lei - 5%
Preț: 1373.11 lei - 5%
Preț: 1055.83 lei - 5%
Preț: 696.72 lei - 5%
Preț: 1359.58 lei - 5%
Preț: 699.37 lei - 5%
Preț: 373.37 lei - 5%
Preț: 1061.59 lei - 5%
Preț: 690.73 lei - 5%
Preț: 1064.77 lei - 5%
Preț: 1247.52 lei - 5%
Preț: 1072.86 lei - 5%
Preț: 1064.77 lei - 5%
Preț: 359.15 lei - 15%
Preț: 619.75 lei - 5%
Preț: 693.55 lei - 5%
Preț: 1359.06 lei - 5%
Preț: 2054.22 lei - 5%
Preț: 684.26 lei - 5%
Preț: 1066.18 lei - 18%
Preț: 1351.25 lei - 18%
Preț: 920.28 lei - 5%
Preț: 1044.18 lei - 5%
Preț: 361.44 lei - 5%
Preț: 695.84 lei -
Preț: 376.90 lei - 5%
Preț: 1368.16 lei - 5%
Preț: 352.64 lei - 5%
Preț: 1065.68 lei - 5%
Preț: 355.28 lei - 5%
Preț: 693.02 lei - 5%
Preț: 1080.23 lei - 5%
Preț: 690.92 lei - 5%
Preț: 688.09 lei - 5%
Preț: 1926.32 lei
Preț: 387.82 lei
Nou
Puncte Express: 582
Preț estimativ în valută:
68.63€ • 80.47$ • 60.27£
68.63€ • 80.47$ • 60.27£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781475706253
ISBN-10: 1475706251
Pagini: 488
Ilustrații: 486 p. 330 illus.
Greutate: 0.77 kg
Ediția:1989
Editura: Springer Us
Colecția Springer
Seria NATO Science Series B:
Locul publicării:New York, NY, United States
ISBN-10: 1475706251
Pagini: 488
Ilustrații: 486 p. 330 illus.
Greutate: 0.77 kg
Ediția:1989
Editura: Springer Us
Colecția Springer
Seria NATO Science Series B:
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Complexity and Chaos.- Chaotic Metamorphoses.- I. Characterizing Temporal Complexity: Chaos.- A. Measuring Dimensions, Entropies and Lyapunov Exponents.- Measures of Dimensions from Astrophysical Data.- Some Remarks on Nonlinear Data Analysis of Physiological Time Series.- Hierarchies of Relations Between Partial Dimensions and Local Expansion Rates in Strange Attractors.- Experimental Study of the Multifractal Structure of the Quasiperiodic Set.- Statistical Inference Theory for Measures of Complexity in Chaos Theory and Nonlinear Science.- Practical Remarks on the Estimation of Dimension and Entropy from Experimental Data.- Chaotic Behavior of the Forced Hodgkin-Huxley Axon.- Chaotic Time Series Analysis Using Short and Noisy Dta Sets: Applications to a Clinical Epilepsy Seizure.- Measuring Complexity in Terms of Mutual Information.- Estimating Lyapunov Exponents From Approximate Return Maps.- Estimating Local Intrinsic Dimensionality Using Thresholding Techniques.- Seeking Dynamically Connected Chaotic Variables.- On Problems Encountered with Dimension Calculations.- Systematic Errors in Estimating Dimensions from Experimental Data.- Analyzing Periodic Saddles in Experimental Strange Attractors.- Time Evolution of Local Complexity Measures and Aperiodic Perturbations of Nonlinear Dynamical Systems.- Analysis of Local Space/Time Statistics and Dimensions of Attractors Using Singular Value Decompositon and Information Theoretic Criteria.- Entropy and Correlation Time in a Multimode Dye Laser.- Dimension Calculation Precision with Finite Data Sets.- Chaos in Childhood Epidemics.- Measurement of f(?) for Multifractal Attractors in Driven Diode Resonator Systems.- Is there a Strange Attractor in a Fluidized Bed?.- Statistical Error in Dimension Estimators.- B. OtherMeasures.- Dynamical Complelxity of Strange Sets.- Characterization of Complexity by Aperiodic Driving Forces.- Stabilization of Prolific Populations Through Migration and Long-lived Propagules.- Complex Behavior of Systems Due to Semi-stable Attractors: Attractors That Have Been Destablized but Which Still Temporarily Dominate the Dynamics of a System.- Universal Properties of the Resonance Curve of Complex Systems.- The Effects of External Noise on Complexity in Two-dimensional Driven Damped Dynamical System.- Chaos on a Catastrophe Manifold.- Topolgical Frequencies in Dynamical Systems.- Phase Transitions Induced by Deterministic Delayed Forces.- Mutual Information Functions Versus Correlation Functions in Binary Sequences.- Reduction of Complexity by Optimal Driving Forces.- Symbolic Dynamical Resolution of Power Spectra.- Relative Rotation Rates for Driven Dynamical Systems.- Stretching Folding Twisting in the Driven Damped Duffing Device.- Characterizing Chaotic Attractors Underlying Single Mode Laser Emission by Quantitative Laser Field Phase Measurements.- C. Characterizing Homoclinic Chaos.- Shil’nikov Chaos: How to Characterize Homoclinic and Heteroclinic Behavior.- Time Series Near Codimension Two Global Bifurcations.- Characterization of Shil’nikov Chaos in a CO2 Laser Containing a Saturable Absorber.- Symmetry-breaking Homoclinic Chaos.- Time Return Maps and Distributions for the Laser with Saturable Absorber.- D. Building Models from Data.- Unfolding Complexity in Nonlinear Dynamical Systems.- Inferring the Dynamic; Quantifying Physical Complexity.- Symbolic Dynamics from Chaotic Time Series.- Modelling Dynamical Systems from Real-world Data.- Extraction of Models from Complex Data.- Quantifying Chaos with Predictive Flows and Maps: Locating UnstablePeriodic Orbits.- II. Characterizing Spatio- Temp Oral Complexity: Turbulence.- A. Theoretical.- Defect-induced Spatio-temporal Chaos.- Lyapunov Exponents, Dimension and Entropy in Coupled Lattice Maps.- Phase Dynamics, Phase Resettiing, Correlation Functions and Coupled Map Lattices.- Characterization of Spatiotemporal Structures in Lasers: A Progress Report.- Amplitude Equations for Hexagonal Patterns of Convection in Non-Boussinesq Fluids.- Fractal Dimensions in Coupled Map Lattices.- Weak Turbulence and the Dynamics of Topological Defects.- Pattern Cardinality as a Characterization of Dynamical Complexity.- B. Experimental.- Characterizing Spatiotemporal Chaos in Electrodeposition Experiments.- Characterizing Space-time Chaos in an Experiment of Thermal Convection...- Characterizing Dynamical Complexity in Interfacial Waves.- Characterization of Irregular Interfaces: Roughness and Self-affine Fractals.- The Field Patterns of a Hybrid Mode Laser: Detecting the “Hidden” Bistability of the Optical Phase Pattern.- Contributors.