Cantitate/Preț
Produs

Mathematical Programming with Data Perturbations II, Second Edition: Lecture Notes in Pure and Applied Mathematics

Autor Fiacco
en Limba Engleză Hardback – 27 iul 2017
This book presents theoretical results, including an extension of constant rank and implicit function theorems, continuity and stability bounds results for infinite dimensional problems, and the interrelationship between optimal value conditions and shadow prices for stable and unstable programs.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 161221 lei  6-8 săpt.
  CRC Press – 24 ian 1983 161221 lei  6-8 săpt.
Hardback (1) 161740 lei  6-8 săpt.
  CRC Press – 27 iul 2017 161740 lei  6-8 săpt.

Din seria Lecture Notes in Pure and Applied Mathematics

Preț: 161740 lei

Preț vechi: 197244 lei
-18%

Puncte Express: 2426

Preț estimativ în valută:
28593 34091$ 247100£

Carte tipărită la comandă

Livrare economică 16-30 martie


Specificații

ISBN-13: 9781138404014
ISBN-10: 1138404012
Pagini: 168
Dimensiuni: 178 x 254 mm
Greutate: 0.51 kg
Ediția:2 New edition
Editura: CRC Press
Colecția CRC Press
Seria Lecture Notes in Pure and Applied Mathematics


Public țintă

Professional

Cuprins

1. Theorem of Constant Rank for Lipschitzian Maps 2. Lipschitzian Perturbations of Infinite Optimization Problems 3. On the Continuity of the Optimum Set in Parametric Semiinfinite Programming 4. Optimality Conditions and Shadow Prices 5. Optimal Value Continuity and Differential Stability Bounds under the Mangasarian-Fromovitz Constraint Qualification 6. Iteration and Sensitivity for a Nonlinear Spatial Equilibrium Problem 7. A Sensitivity Analysis Approach to Iteration Skipping in the Harmonic Mean Algorithm 8. Least Squares Optimization with Implicit Model Equations

Descriere

This book presents theoretical results, including an extension of constant rank and implicit function theorems, continuity and stability bounds results for infinite dimensional problems, and the interrelationship between optimal value conditions and shadow prices for stable and unstable programs.