Cantitate/Preț
Produs

Mathematical Programming with Data Perturbations II, Second Edition: Lecture Notes in Pure and Applied Mathematics

Autor Fiacco
en Limba Engleză Paperback – 24 ian 1983
This book presents theoretical results, including an extension of constant rank and implicit function theorems, continuity and stability bounds results for infinite dimensional problems, and the interrelationship between optimal value conditions and shadow prices for stable and unstable programs.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 126961 lei  3-5 săpt.
  CRC Press – 24 ian 1983 126961 lei  3-5 săpt.
Hardback (1) 126993 lei  3-5 săpt.
  CRC Press – 27 iul 2017 126993 lei  3-5 săpt.

Din seria Lecture Notes in Pure and Applied Mathematics

Preț: 126961 lei

Preț vechi: 180405 lei
-30%

Puncte Express: 1904

Preț estimativ în valută:
22469 26260$ 19508£

Carte disponibilă

Livrare economică 30 ianuarie-13 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780824717896
ISBN-10: 0824717899
Pagini: 168
Dimensiuni: 178 x 254 x 12 mm
Greutate: 0.45 kg
Ediția:Revizuită
Editura: CRC Press
Colecția CRC Press
Seria Lecture Notes in Pure and Applied Mathematics


Public țintă

Professional

Cuprins

1. Theorem of Constant Rank for Lipschitzian Maps 2. Lipschitzian Perturbations of Infinite Optimization Problems 3. On the Continuity of the Optimum Set in Parametric Semiinfinite Programming 4. Optimality Conditions and Shadow Prices 5. Optimal Value Continuity and Differential Stability Bounds under the Mangasarian-Fromovitz Constraint Qualification 6. Iteration and Sensitivity for a Nonlinear Spatial Equilibrium Problem 7. A Sensitivity Analysis Approach to Iteration Skipping in the Harmonic Mean Algorithm 8. Least Squares Optimization with Implicit Model Equations Aivars Celmiife

Descriere

This book presents theoretical results, including an extension of constant rank and implicit function theorems, continuity and stability bounds results for infinite dimensional problems, and the interrelationship between optimal value conditions and shadow prices for stable and unstable programs.