Markov Chain Aggregation for Agent-Based Models: Understanding Complex Systems
Autor Sven Banischen Limba Engleză Hardback – 5 ian 2016
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 476.16 lei 6-8 săpt. | |
| Springer International Publishing – 30 mar 2018 | 476.16 lei 6-8 săpt. | |
| Hardback (1) | 482.13 lei 6-8 săpt. | |
| Springer International Publishing – 5 ian 2016 | 482.13 lei 6-8 săpt. |
Din seria Understanding Complex Systems
- 18%
Preț: 1075.86 lei -
Preț: 421.61 lei - 15%
Preț: 434.83 lei - 18%
Preț: 911.34 lei - 20%
Preț: 651.77 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1069.81 lei - 18%
Preț: 911.64 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.42 lei - 18%
Preț: 912.85 lei - 18%
Preț: 1083.44 lei - 18%
Preț: 915.13 lei - 18%
Preț: 923.48 lei -
Preț: 373.03 lei - 15%
Preț: 620.38 lei - 18%
Preț: 907.25 lei - 15%
Preț: 627.14 lei - 18%
Preț: 917.87 lei - 15%
Preț: 621.80 lei -
Preț: 415.75 lei - 15%
Preț: 615.84 lei - 15%
Preț: 624.63 lei - 20%
Preț: 619.46 lei - 24%
Preț: 848.84 lei - 20%
Preț: 630.19 lei -
Preț: 409.71 lei - 15%
Preț: 614.60 lei - 18%
Preț: 914.35 lei - 18%
Preț: 1333.34 lei - 15%
Preț: 627.79 lei - 15%
Preț: 565.69 lei - 18%
Preț: 918.47 lei - 15%
Preț: 614.60 lei - 15%
Preț: 618.34 lei - 18%
Preț: 902.84 lei - 18%
Preț: 906.17 lei - 18%
Preț: 907.54 lei - 15%
Preț: 613.80 lei - 15%
Preț: 620.55 lei - 20%
Preț: 613.96 lei - 20%
Preț: 616.38 lei - 15%
Preț: 618.83 lei - 18%
Preț: 972.73 lei - 18%
Preț: 913.62 lei
Preț: 482.13 lei
Preț vechi: 567.21 lei
-15% Nou
Puncte Express: 723
Preț estimativ în valută:
85.33€ • 100.07$ • 74.81£
85.33€ • 100.07$ • 74.81£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319248752
ISBN-10: 3319248758
Pagini: 170
Ilustrații: XIV, 195 p. 83 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Understanding Complex Systems
Locul publicării:Cham, Switzerland
ISBN-10: 3319248758
Pagini: 170
Ilustrații: XIV, 195 p. 83 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Understanding Complex Systems
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Background and Concepts.- Agent-based Models as Markov Chains.- The Voter Model with Homogeneous Mixing.- From Network Symmetries to Markov Projections.- Application to the Contrarian Voter Model.- Information-Theoretic Measures for the Non-Markovian Case.- Overlapping Versus Non-Overlapping Generations.- Aggretion and Emergence: A Synthesis.- Conclusion.
Textul de pe ultima copertă
This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting “micro-chain” including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of “voter-like” models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems
Caracteristici
Introduces and describes a new approach for modelling certain types of complex dynamical systems Self-contained presentation and introductory level Useful as advanced text and as self-study guide Includes supplementary material: sn.pub/extras