Cantitate/Preț
Produs

Machine Learning and Data Mining for Sports Analytics: 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected Papers: Communications in Computer and Information Science, cartea 1783

Editat de Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann
en Limba Engleză Paperback – 25 feb 2023
This book constitutes the refereed proceedings of the 9th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2022, held in Grenoble, France, during September 19, 2022. 

The 10 full papers included in this book were carefully reviewed and selected from 18 submissions. They were organized in topical sections as follows: Football, Racket sports, Cycling.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (5) 31292 lei  43-57 zile +1269 lei  5-11 zile
  Springer Nature Switzerland – 25 feb 2023 38800 lei  22-36 zile +1269 lei  5-11 zile
  Springer International Publishing – 10 dec 2020 31292 lei  43-57 zile
  Springer International Publishing – 7 apr 2019 36954 lei  43-57 zile
  Springer Nature Switzerland – 26 feb 2024 47999 lei  43-57 zile
  Springer International Publishing – 4 mai 2022 50734 lei  43-57 zile

Din seria Communications in Computer and Information Science

Preț: 38800 lei

Preț vechi: 48500 lei
-20% Nou

Puncte Express: 582

Preț estimativ în valută:
6865 7998$ 5995£

Carte disponibilă

Livrare economică 29 decembrie 25 - 12 ianuarie 26
Livrare express 12-18 decembrie pentru 2268 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031275265
ISBN-10: 3031275268
Pagini: 127
Ilustrații: X, 127 p. 47 illus., 38 illus. in color.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.2 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science

Locul publicării:Cham, Switzerland

Cuprins

Football.- Towards expected counter - Using comprehensible features to predict counterattacks.- Shot analysis in different levels of German football using Expected Goals.- Analyzing passing sequences for the prediction of goal-scoring opportunities.- Let’s penetrate the defense: A machine learning model for prediction and valuation of penetrative passes.- Evaluation of creating scoring opportunities for teammates in soccer via trajectory prediction.- Cost-efficient and bias-robust sports player tracking by integrating GPS and video.- Racket sports.- Predicting tennis serve directions with machine learning.- Discovering and visualizing tactics in table tennis games based on subgroup discovery.- Cycling.- Athlete monitoring in professional road cycling using similarity search on time series data.