Locally Conformal Kähler Geometry: Progress in Mathematics, cartea 155
Autor Sorin Dragomir, Liuiu Orneaen Limba Engleză Paperback – 5 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 618.03 lei 6-8 săpt. | |
| Birkhäuser Boston – 5 oct 2012 | 618.03 lei 6-8 săpt. | |
| Hardback (1) | 624.14 lei 6-8 săpt. | |
| Birkhäuser Boston – 18 dec 1997 | 624.14 lei 6-8 săpt. |
Din seria Progress in Mathematics
- 24%
Preț: 883.02 lei -
Preț: 141.14 lei - 18%
Preț: 720.26 lei - 18%
Preț: 682.23 lei - 15%
Preț: 558.45 lei - 24%
Preț: 1053.06 lei - 18%
Preț: 700.55 lei - 15%
Preț: 577.71 lei -
Preț: 377.48 lei -
Preț: 380.09 lei -
Preț: 375.44 lei -
Preț: 362.51 lei - 18%
Preț: 701.32 lei - 15%
Preț: 627.31 lei - 15%
Preț: 624.14 lei - 18%
Preț: 863.10 lei -
Preț: 370.46 lei -
Preț: 376.17 lei -
Preț: 364.19 lei - 15%
Preț: 511.16 lei - 15%
Preț: 618.03 lei - 15%
Preț: 625.57 lei -
Preț: 366.76 lei -
Preț: 377.48 lei -
Preț: 383.38 lei - 15%
Preț: 672.25 lei -
Preț: 451.16 lei -
Preț: 371.20 lei - 18%
Preț: 867.63 lei - 18%
Preț: 771.22 lei - 15%
Preț: 615.35 lei - 18%
Preț: 1085.89 lei - 15%
Preț: 475.06 lei - 15%
Preț: 563.17 lei - 18%
Preț: 1287.84 lei
Preț: 618.03 lei
Preț vechi: 727.08 lei
-15% Nou
Puncte Express: 927
Preț estimativ în valută:
109.36€ • 128.24$ • 96.04£
109.36€ • 128.24$ • 96.04£
Carte tipărită la comandă
Livrare economică 16 februarie-02 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461273875
ISBN-10: 1461273870
Pagini: 348
Ilustrații: XIII, 330 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:1998
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 1461273870
Pagini: 348
Ilustrații: XIII, 330 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:1998
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
1 L.c.K. Manifolds.- 2 Principally Important Properties.- 2.1 Vaisman’s conjectures.- 2.2 Reducible manifolds.- 2.3 Curvature properties.- 2.4 Blow-up.- 2.5 An adapted cohomology.- 3 Examples.- 3.1 Hopf manifolds.- 3.2 The Inoue surfaces.- 3.3 A generalization of Thurston’s manifold.- 3.4 A four-dimensional solvmanifold.- 3.5 SU(2) x S1.- 3.6 Noncompact examples.- 3.7 Brieskorn & Van de Ven’s manifolds.- 4 Generalized Hopf manifolds.- 5 Distributions on a g.H. manifold.- 6 Structure theorems.- 6.1 Regular Vaisman manifolds.- 6.2 L.c.K.0 manifolds.- 6.3 A spectral characterization.- 6.4 k-Vaisman manifolds.- 7 Harmonic and holomorphic forms.- 7.1 Harmonic forms.- 7.2 Holomorphic vector fields.- 8 Hermitian surfaces.- 9 Holomorphic maps.- 9.1 General properties.- 9.2 Pseudoharmonic maps.- 9.3 A Schwarz lemma.- 10 L.c.K. submersions.- 10.1 Submersions from CH?n.- 10.2 L.c.K. submersions.- 10.3 Compact total space.- 10.4 Total space a g.H. manifold.- 11 L.c. hyperKähler manifolds.- 12 Submanifolds.- 12.1 Fundamental tensors.- 12.2 Complex and CR submanifolds.- 12.3 Anti-invariant submanifolds.- 12.4 Examples.- 12.5 Distributions on submanifolds.- 12.6 Totally umbilical submanifolds.- 13 Extrinsic spheres.- 13.1 Curvature-invariant submanifolds.- 13.2 Extrinsic and standard spheres.- 13.3 Complete intersections.- 13.4 Yano’s integral formula.- 14 Real hypersurfaces.- 14.1 Principal curvatures.- 14.2 Quasi-Einstein hypersurfaces.- 14.3 Homogeneous hypersurfaces.- 14.4 Type numbers.- 14.5 L. c. cosymplectic metrics.- 15 Complex submanifolds.- 15.1 Quasi-Einstein submanifolds.- 15.2 The normal bundle.- 15.3 L.c.K. and Kähler submanifolds.- 15.4 A Frankel type theorem.- 15.5 Planar geodesic immersions.- 16 Integral formulae.- 16.1 Hopf fibrations.- 16.2 The horizontallifting technique.- 16.3 The main result.- 17 Miscellanea.- 17.1 Parallel IInd fundamental form.- 17.2 Stability.- 17.3 f-Structures.- 17.4 Parallel f-structure P.- 17.5 Sectional curvature.- 17.6 L. c. cosymplectic structures.- 17.7 Chen’s class.- 17.8 Geodesic symmetries.- 17.9 Submersed CR submanifolds.- A Boothby-Wang fibrations.- B Riemannian submersions.