Lectures on the Nearest Neighbor Method: Springer Series in the Data Sciences
Autor Gérard Biau, Luc Devroyeen Limba Engleză Paperback – 21 mar 2019
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 855.82 lei 6-8 săpt. | |
| Springer International Publishing – 21 mar 2019 | 855.82 lei 6-8 săpt. | |
| Hardback (1) | 861.60 lei 6-8 săpt. | |
| Springer International Publishing – 15 dec 2015 | 861.60 lei 6-8 săpt. |
Preț: 855.82 lei
Preț vechi: 1043.68 lei
-18% Nou
Puncte Express: 1284
Preț estimativ în valută:
151.46€ • 177.63$ • 132.80£
151.46€ • 177.63$ • 132.80£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319797823
ISBN-10: 3319797824
Pagini: 290
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
ISBN-10: 3319797824
Pagini: 290
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
Cuprins
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Recenzii
“This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. … It is intended for a large audience, including students, teachers, and researchers.” (Florin Gorunescu, zbMATH 1330.68001, 2016)
Textul de pe ultima copertă
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Caracteristici
Presents a rigorous overview of nearest neighbor methods Many different components covered: statistical, probabilistic, combinatorial, and geometric ideas Extensive appendix material provided