Lectures on the Nearest Neighbor Method
Autor Gérard Biau, Luc Devroyeen Limba Engleză Hardback – 15 dec 2015
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 855.82 lei 6-8 săpt. | |
| Springer International Publishing – 21 mar 2019 | 855.82 lei 6-8 săpt. | |
| Hardback (1) | 862.19 lei 6-8 săpt. | |
| Springer – 15 dec 2015 | 862.19 lei 6-8 săpt. |
Preț: 862.19 lei
Preț vechi: 1051.46 lei
-18% Nou
Puncte Express: 1293
Preț estimativ în valută:
152.57€ • 178.90$ • 133.99£
152.57€ • 178.90$ • 133.99£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319253862
ISBN-10: 3319253867
Pagini: 300
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 160 x 241 x 22 mm
Greutate: 0.62 kg
Ediția:1st edition 2015
Editura: Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3319253867
Pagini: 300
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 160 x 241 x 22 mm
Greutate: 0.62 kg
Ediția:1st edition 2015
Editura: Springer
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Recenzii
“This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. … It is intended for a large audience, including students, teachers, and researchers.” (Florin Gorunescu, zbMATH 1330.68001, 2016)
Textul de pe ultima copertă
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Caracteristici
Presents a rigorous overview of nearest neighbor methods Many different components covered: statistical, probabilistic, combinatorial, and geometric ideas Extensive appendix material provided