Inverse Problems in Wave Propagation
Editat de Guy Chavent, George Papanicolaou, Paul Sacks, William Symesen Limba Engleză Hardback – apr 1997
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 385.79 lei 6-8 săpt. | |
| Springer – 23 oct 2012 | 385.79 lei 6-8 săpt. | |
| Hardback (1) | 574.16 lei 6-8 săpt. | |
| SPRINGER NATURE – apr 1997 | 574.16 lei 6-8 săpt. |
Preț: 574.16 lei
Preț vechi: 675.48 lei
-15% Nou
Puncte Express: 861
Preț estimativ în valută:
101.60€ • 119.14$ • 89.23£
101.60€ • 119.14$ • 89.23£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387949765
ISBN-10: 0387949763
Pagini: 520
Dimensiuni: 160 x 241 x 34 mm
Greutate: 0.94 kg
Ediția:New.
Editura: SPRINGER NATURE
ISBN-10: 0387949763
Pagini: 520
Dimensiuni: 160 x 241 x 34 mm
Greutate: 0.94 kg
Ediția:New.
Editura: SPRINGER NATURE
Cuprins
From the contents: Wave propagation inverse problems in medicine and environmental health.- Variational structure of inverse problems in wave propagation and vibration.- Convergence of numerical methods for inverse problems with general input sources.- Topics in ocean acoustic inverse problems.- Survey of selected topics in inverse electromagnetic scattering theory.- Generalized modes in an acoustic strip.- Inverse scattering problems for Schrodinger operators with magnetic and electric potentials.- Results, old and new, in computer tomography.- Detecting subsurface hydrocarbons with elastic wavefields.- How many parameters can one solve for in diffuse tomography?- Modeling scanned acoustic imaging of defects at solid interfaces.- On reconstruction of the diffusion and of the principal coefficient of a hyperbolic equation.- The r-solution and its applications in linearized waveform inversion for a layered background.- Directional moments in the acoustic inverse problem.- Finding the density of a membrane from nodal lines.- An inverse obstacle problem: A uniqueness theorem for balls.- Inverse scattering in acoustic media using interior transmission eigenvalues.