Introduction to Mining Geostatistics: Intuitive Applications With Excel and R
Autor Konstantinos Modis, George Valakasen Limba Engleză Paperback – 27 noi 2025
Key topics include:
Essential Statistical Foundations – Master core data analysis techniques for ore reserves estimation.
Sampling Strategies & Error Analysis – Minimize uncertainty and improve data reliability.
Spatial Analysis & Kriging – Use variograms, covariance functions, and Kriging algorithms to estimate unknown values from borehole data.
Multivariate Geostatistics – Model interdependent variables to enhance accuracy and predictive power.
Stochastic Simulation – Explore alternative estimation methods for risk assessment and scenario analysis.
Reserve Classification & Reporting – Understand global classification systems and key reserve estimation parameters.
Filled with real-world case studies and practical examples, this book bridges theory and application, making geostatistics intuitive and approachable. Whether you're optimizing exploration projects, improving resource estimates, or conducting economic risk assessments, this guide equips you with the tools to make informed decisions.
- Includes templated spreadsheet examples and exercises in Excel and R for accessible understanding
- Provides geometric instead of algebraic representation wherever possible
- Detailed visualization of geostatistics theory throughout the chapters
Preț: 730.81 lei
Preț vechi: 1077.63 lei
-32% Nou
Puncte Express: 1096
Preț estimativ în valută:
129.32€ • 150.81$ • 113.55£
129.32€ • 150.81$ • 113.55£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443314803
ISBN-10: 0443314802
Pagini: 430
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443314802
Pagini: 430
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction to ore reserves estimation
2. Essential statistics and exploratory data analysis
3. Introduction to sampling and relevant errors
4. The stochastic model of estimation
5. Variograms and the structural analysis of a Random Function
6. Fitting theoretical models of variograms
7. Estimation of in situ resources
8. Verifying the accuracy of the estimation model
9. Multivariate geostatistics
10. Simulation of a Random Function
11. Classification schemes
12. Case studies
2. Essential statistics and exploratory data analysis
3. Introduction to sampling and relevant errors
4. The stochastic model of estimation
5. Variograms and the structural analysis of a Random Function
6. Fitting theoretical models of variograms
7. Estimation of in situ resources
8. Verifying the accuracy of the estimation model
9. Multivariate geostatistics
10. Simulation of a Random Function
11. Classification schemes
12. Case studies