Integrodifferential Equations and Delay Models in Population Dynamics: Lecture Notes in Biomathematics, cartea 20
Autor J. M. Cushingen Limba Engleză Paperback – oct 1977
Din seria Lecture Notes in Biomathematics
-
Preț: 364.19 lei -
Preț: 366.02 lei -
Preț: 397.66 lei -
Preț: 375.81 lei -
Preț: 381.19 lei -
Preț: 372.67 lei -
Preț: 370.46 lei - 5%
Preț: 352.64 lei -
Preț: 370.10 lei -
Preț: 373.40 lei -
Preț: 379.31 lei - 5%
Preț: 375.10 lei - 5%
Preț: 356.67 lei -
Preț: 373.24 lei -
Preț: 388.93 lei -
Preț: 376.75 lei -
Preț: 369.90 lei -
Preț: 369.90 lei -
Preț: 369.16 lei -
Preț: 365.29 lei -
Preț: 369.53 lei -
Preț: 390.23 lei -
Preț: 365.09 lei -
Preț: 385.44 lei -
Preț: 370.62 lei -
Preț: 375.44 lei -
Preț: 380.46 lei -
Preț: 364.35 lei -
Preț: 368.43 lei - 15%
Preț: 555.75 lei -
Preț: 366.40 lei -
Preț: 390.23 lei -
Preț: 383.96 lei -
Preț: 395.05 lei -
Preț: 371.00 lei - 5%
Preț: 358.53 lei -
Preț: 364.35 lei -
Preț: 372.31 lei -
Preț: 388.78 lei -
Preț: 337.06 lei -
Preț: 368.79 lei -
Preț: 393.02 lei -
Preț: 383.38 lei -
Preț: 384.48 lei -
Preț: 376.90 lei -
Preț: 370.26 lei -
Preț: 386.37 lei -
Preț: 377.68 lei -
Preț: 390.61 lei
Preț: 370.26 lei
Nou
Puncte Express: 555
Preț estimativ în valută:
65.51€ • 77.02$ • 57.38£
65.51€ • 77.02$ • 57.38£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540084495
ISBN-10: 3540084495
Pagini: 208
Ilustrații: VI, 198 p.
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540084495
Pagini: 208
Ilustrații: VI, 198 p.
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1: Introductory Remarks.- 2: Some Preliminary Remarks on Stability.- 2.1 Linearization.- 2.2 Autonomous Linear Systems.- 3: Stability and Delay Models for a Single Species.- 3.1 Delay Logistic Equations.- 3.2 The Logistic Equation with a Constant Time Lag.- 3. 3 Some Other Models.- 3.4 Some General Results.- 3.5 A General Instability Result.- 3.6 The Stabilizing Effect of Delays.- 4: Stability and Multi-Species Interactions with Delays.- 4.1 Volterra’s Predator-Prey Model with Delays.- 4. 2 Predator-Prey Models with Density Terms.- 4.3 Predator-Prey Models with Response Delays to Resource Limitation.- 4.4 Stability and Vegetation-Herbivore-Carnivore Systems.- 4.5 Some Other Delay Predator-Prey Models.- 4.6 The Stabilization of Predator-Prey Interactions.- 4.7 A General Predator-Prey Model.- 4.8 Competition and Mutualism.- 4.9 Stability and Instability of n-Species Models.- 4.10 Delays Can Stabilize an Otherwise Unstable Equilibrium.- 5: Oscillations and Single Species Models with Delays.- 5.1 Single Species Models and Large Delays.- 5.2 Bifurcation of Periodic Solutions of the Delay Logistic.- 5.3 Other Results on Nonconstant Periodic Solutions.- 5.4 Periodically Fluctuating Environments.- 6: Oscillations and Multi-Species Interactions with Delays.- 6.1 A General Bifurcation Theoren.- 6.2 Periodic Oscillations Due to Delays in Predator-Prey Interactions..- 6.3 Numerically Integrated Examples of Predator-Prey Models with Delays.- 6.4 Oscillations and Predator-Prey Models with Delays.- 6.5 Two Species Competition Models with Linear Response Functionals.- 6.6 Two Species Mutualism Models with Linear Response Functionals.- 6.7 Delays in Systems with More than Two Interacting Species.- 6.8 Periodically Fluctuating Environments.- 7: Some Miscellaneous Topics.- References.