Competition and Cooperation in Neural Nets: Proceedings of the U.S.-Japan Joint Seminar held at Kyoto, Japan February 15–19, 1982: Lecture Notes in Biomathematics, cartea 45
Editat de S. Amari, Ma Arbiben Limba Engleză Paperback – iul 1982
Din seria Lecture Notes in Biomathematics
-
Preț: 364.19 lei -
Preț: 366.02 lei -
Preț: 397.66 lei -
Preț: 375.81 lei -
Preț: 381.19 lei -
Preț: 372.67 lei -
Preț: 370.46 lei - 5%
Preț: 352.64 lei -
Preț: 370.10 lei -
Preț: 373.40 lei -
Preț: 379.31 lei - 5%
Preț: 375.10 lei - 5%
Preț: 356.67 lei -
Preț: 370.26 lei -
Preț: 373.24 lei -
Preț: 388.93 lei -
Preț: 376.75 lei -
Preț: 369.90 lei -
Preț: 369.90 lei -
Preț: 369.16 lei -
Preț: 365.29 lei -
Preț: 369.53 lei -
Preț: 390.23 lei -
Preț: 365.09 lei -
Preț: 385.44 lei -
Preț: 370.62 lei -
Preț: 375.44 lei -
Preț: 380.46 lei -
Preț: 364.35 lei -
Preț: 368.43 lei - 15%
Preț: 555.75 lei -
Preț: 366.40 lei -
Preț: 390.23 lei -
Preț: 383.96 lei -
Preț: 395.05 lei -
Preț: 371.00 lei - 5%
Preț: 358.53 lei -
Preț: 364.35 lei -
Preț: 372.31 lei -
Preț: 337.06 lei -
Preț: 368.79 lei -
Preț: 393.02 lei -
Preț: 383.38 lei -
Preț: 384.48 lei -
Preț: 376.90 lei -
Preț: 370.26 lei -
Preț: 386.37 lei -
Preț: 377.68 lei -
Preț: 390.61 lei
Preț: 388.78 lei
Nou
Puncte Express: 583
Preț estimativ în valută:
68.79€ • 80.14$ • 60.07£
68.79€ • 80.14$ • 60.07£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Livrare express 12-18 decembrie pentru 92.35 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540115748
ISBN-10: 3540115749
Pagini: 464
Ilustrații: XIV, 441 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.79 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540115749
Pagini: 464
Ilustrații: XIV, 441 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.79 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. An Opening Perspective.- 1. Competitive and Cooperative Aspects in Dynamics of Neural Excitation and Self-Organization.- II. Reaction-Diffusion Equations.- 2. Sigmoidal Systems and Layer Analysis.- 3. Asymptotic Behavior of Stationary Homogeneous Neuronal Nets.- 4. Aggregation and Segregation Phenomena in Reaction-Diffusion Equations.- III. Single-Neuron and Stochastic Models.- 5. Nerve Pulse Interactions.- 6. Micronetworks in Nerve Cells.- 7. Role and Use of Noise in Biological Systems.- 8. Stochastic, Quantal Membrane Conductances and Neuronal Function.- 9. Diffusion Approximations and Computational Problems for Single Neurons’ Activity.- 10. Periodic Pulse Sequences Generated by an Analog Neuron Model.- 11. On a Mathematical Neuron Model.- IV. Oscillations in Neural Networks.- 12. Control of Distributed Neural Oscillators.- 13. Characteristics of Neural Network with Uniform Structure.- V. Development and Plasticity of the Visual Systems.- 14. Systems Matching and Topographic Maps: The Branch-Arrow Model (BAM).- 15. Differential Localization of Plastic Synapses in the Visual Cortex of the Young Kitten: Evidence for Guided Development of the Visual Cortical Networks.- 16. Self-Organization of Neural Nets with Competitive and Cooperative Interaction.- 17. A Simple Paradigm for the Self-Organized Formation of Structured Feature Maps.- 18. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition.- 19. On the Spontaneous Emergence of Neuronal Schemata.- 20. Associative and Competìve Principles of Learning and Development.- VI. Sensori-Motor Transformations and Learning.- 21. Modelling Neural Mechanisms of Visuomotor Coordination in Frog and Toad.- 22. Two-Dimensional Model of Retinal-Tectal-Pretectal Interactions for theControl of Prey-Predator Recognition and Size Preference in Amphibia.- 23. Tensor Theory of Brain Function:The Cerebellum as a Space-Time Metric.- 24. Mechanisms of Motor Learning.- 25. Dynamic and Plastic Properties of the Brain Stem Neuronal Networks as the Possible Neuronal Basis of Learning and Memory.