Instance Selection and Construction for Data Mining: The Springer International Series in Engineering and Computer Science, cartea 608
Editat de Huan Liu, Hiroshi Motodaen Limba Engleză Hardback – 28 feb 2001
One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc.
Instance Selection and Construction for Data Mining brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 955.62 lei 6-8 săpt. | |
| Springer Us – 8 dec 2010 | 955.62 lei 6-8 săpt. | |
| Hardback (1) | 964.19 lei 6-8 săpt. | |
| Springer Us – 28 feb 2001 | 964.19 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- 20%
Preț: 594.49 lei - 24%
Preț: 859.55 lei - 20%
Preț: 1847.13 lei - 20%
Preț: 1228.27 lei - 24%
Preț: 866.26 lei - 18%
Preț: 609.91 lei - 20%
Preț: 618.64 lei - 20%
Preț: 569.56 lei - 18%
Preț: 733.28 lei - 18%
Preț: 1177.92 lei - 18%
Preț: 927.56 lei - 20%
Preț: 621.14 lei - 18%
Preț: 911.94 lei - 20%
Preț: 621.64 lei - 15%
Preț: 612.85 lei - 20%
Preț: 618.96 lei - 18%
Preț: 912.40 lei - 20%
Preț: 619.58 lei - 20%
Preț: 950.07 lei - 20%
Preț: 621.01 lei - 18%
Preț: 910.11 lei - 20%
Preț: 956.89 lei - 18%
Preț: 919.85 lei - 20%
Preț: 620.07 lei - 15%
Preț: 617.89 lei - 18%
Preț: 913.32 lei - 18%
Preț: 1173.85 lei - 18%
Preț: 920.45 lei - 15%
Preț: 619.12 lei - 18%
Preț: 911.64 lei - 18%
Preț: 910.58 lei - 20%
Preț: 1234.64 lei
Preț: 964.19 lei
Preț vechi: 1205.24 lei
-20% Nou
Puncte Express: 1446
Preț estimativ în valută:
170.59€ • 200.55$ • 149.41£
170.59€ • 200.55$ • 149.41£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792372097
ISBN-10: 0792372093
Pagini: 416
Ilustrații: XXV, 416 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.86 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 0792372093
Pagini: 416
Ilustrații: XXV, 416 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.86 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Data Reduction via Instance Selection.- 2 Sampling: Knowing Whole from Its Part.- 3 A Unifying View on Instance Selection.- 4 Competence Guided Instance Selection for Case-Based Reasoning.- 5 Identifying Competence-Critical Instances for Instance-Based Learners.- 6 Genetic-Algorithm-Based Instance and Feature Selection.- 7 The Landmark Model: An Instance Selection Method for Time Series Data.- 8 Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms.- 9 Progressive Sampling.- 10 Sampling Strategy for Building Decision Trees from Very Large Databases Comprising Many Continuous Attributes.- 11 Incremental Classification Using Tree-Based Sampling for Large Data.- 12 Instance Construction via Likelihood-Based Data Squashing.- 13 Learning via Prototype Generation and Filtering.- 14 Instance Selection Based on Hypertuples.- 15 KBIS: Using Domain Knowledge to Guide Instance Selection.- 16 Instance Sampling for Boosted and Standalone Nearest Neighbor Classifiers.- 17 Prototype Selection Using Boosted Nearest-Neighbors.- 18 DAGGER: Instance Selection for Combining Multiple Models Learnt from Disjoint Subsets.- 19 Using Genetic Algorithms for Training Data Selection in RBF Networks.- 20 An Active Learning Formulation for Instance Selection with Applications to Object Detection.- 21 Filtering Noisy Instances and Outliers.- 22 Instance Selection Based on Support Vector Machine.- Appendix: Meningoencepalitis Data Set.