Inductive Databases and Constraint-Based Data Mining
Editat de Saso Dzeroski, Bart Goethals, Pan& Panoven Limba Engleză Hardback – 2 noi 2010
Preț: 635.51 lei
Preț vechi: 794.38 lei
-20% Nou
Puncte Express: 953
Preț estimativ în valută:
112.46€ • 131.87$ • 98.76£
112.46€ • 131.87$ • 98.76£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781441977373
ISBN-10: 1441977376
Pagini: 456
Ilustrații: XVII, 456 p.
Dimensiuni: 167 x 242 x 35 mm
Greutate: 0.85 kg
Ediția:2010
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 1441977376
Pagini: 456
Ilustrații: XVII, 456 p.
Dimensiuni: 167 x 242 x 35 mm
Greutate: 0.85 kg
Ediția:2010
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Inductive Databases and Constraint-based Data Mining: Introduction and Overview.- Representing Entities in the OntoDM Data Mining Ontology.- A Practical Comparative Study Of Data Mining Query Languages.- A Theory of Inductive Query Answering.- Constraint-based Mining: Selected Techniques.- Generalizing Itemset Mining in a Constraint Programming Setting.- From Local Patterns to Classification Models.- Constrained Predictive Clustering.- Finding Segmentations of Sequences.- Mining Constrained Cross-Graph Cliques in Dynamic Networks.- Probabilistic Inductive Querying Using ProbLog.- Inductive Databases: Integration Approaches.- Inductive Querying with Virtual Mining Views.- SINDBAD and SiQL: Overview, Applications and Future Developments.- Patterns on Queries.- Experiment Databases.- Applications.- Predicting Gene Function using Predictive Clustering Trees.- Analyzing Gene Expression Data with Predictive Clustering Trees.- Using a Solver Over the String Pattern Domain to Analyze Gene Promoter Sequences.- Inductive Queries for a Drug Designing Robot Scientist.
Caracteristici
Provides a broad and unifying perspective on the field of data mining in general and inductive databases in particular Includes constraint-based mining of predictive models for structured data/outputs, integration/unification of pattern and model mining at the conceptual level Discusses applications to practically relevant problems in bioinformatics Includes supplementary material: sn.pub/extras