Geometry of Harmonic Maps
Autor Yuanlong Xinen Limba Engleză Hardback – 30 apr 1996
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 613.94 lei 43-57 zile | |
| Birkhäuser Boston – 26 sep 2011 | 613.94 lei 43-57 zile | |
| Hardback (1) | 620.58 lei 43-57 zile | |
| birkhäuser – 30 apr 1996 | 620.58 lei 43-57 zile |
Preț: 620.58 lei
Preț vechi: 730.09 lei
-15% Nou
Puncte Express: 931
Preț estimativ în valută:
109.80€ • 127.92$ • 95.88£
109.80€ • 127.92$ • 95.88£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817638207
ISBN-10: 0817638202
Pagini: 260
Ilustrații: X, 246 p.
Dimensiuni: 160 x 241 x 19 mm
Greutate: 0.56 kg
Ediția:1996
Editura: birkhäuser
Locul publicării:Boston, MA, United States
ISBN-10: 0817638202
Pagini: 260
Ilustrații: X, 246 p.
Dimensiuni: 160 x 241 x 19 mm
Greutate: 0.56 kg
Ediția:1996
Editura: birkhäuser
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
I. Introduction.- 1.1 Vector Bundles.- 1.2 Harmonic Maps.- 1.3 A Bochner Type Formula.- 1.4 Basic Properties of Harmonic Maps.- II. Conservation Law.- 2.1 Stress-Energy Tensor and Conservation Law.- 2.2 Monotonicity Formula.- 2.3 Applications of Conservation Law to Liouville type Theorems.- 2.4 Further Generalizations.- III. Harmonic Maps and Gauss Maps.- 3.1 Generalized Gauss Maps.- 3.2 Cone-like Harmonic Maps.- 3.3 Generalized Maximum Principle.- 3.4 Estimates of Image Diameter and its Applications.- 3.5 Gauss Image of a Space-Like Hypersurface in Minkowski Space.- 3.6 Gauss Image of a Space-Like Submanifold in Pseudo-Euclidean Space.- IV. Harmonic Maps and Holomorphic Maps.- 4.1 Partial Energies.- 4.2 Harmonicity of Holomorphic Maps.- 4.3 Holomorphicity of Harmonic Maps.- V. Existence, Nonexistence and Regularity.- 5.1 Direct Method of the Calculus of Variations.- 5.2 Regularity Theorems.- 5.3 Nonexistence and Existence.- 5.4 Regularity Results of Harmonic Maps into Positively Curved Manifolds.- VI. Equivariant Harmonic Maps.- 6.1 Riemannian Submersions and Equivariant Harmonic Maps.- 6.2 Reduction Theorems.- 6.3 Equivariant Variational Formulas.- 6.4 On Harmonic Representatives of ?m(Sm).- 6.5 Harmonic Maps via Isoparametric Maps.- 6.6 Harmonic Maps of Projective Spaces.- 6.7 Equivariant Boundary Value Problems.- References.