Genetic Programming Theory and Practice IX: Genetic and Evolutionary Computation
Editat de Rick Riolo, Ekaterina Vladislavleva, Jason H. Mooreen Limba Engleză Hardback – noi 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 319.60 lei 6-8 săpt. | |
| Springer – 29 noi 2013 | 319.60 lei 6-8 săpt. | |
| Hardback (1) | 325.61 lei 6-8 săpt. | |
| Springer – noi 2011 | 325.61 lei 6-8 săpt. |
Din seria Genetic and Evolutionary Computation
- 20%
Preț: 898.39 lei - 20%
Preț: 567.43 lei - 20%
Preț: 958.50 lei - 20%
Preț: 626.25 lei - 20%
Preț: 590.70 lei - 20%
Preț: 624.95 lei - 20%
Preț: 319.60 lei - 20%
Preț: 624.02 lei - 20%
Preț: 956.44 lei - 20%
Preț: 957.69 lei - 20%
Preț: 618.33 lei - 20%
Preț: 318.48 lei - 20%
Preț: 327.36 lei - 20%
Preț: 321.03 lei - 20%
Preț: 626.07 lei - 20%
Preț: 323.23 lei - 20%
Preț: 1010.01 lei - 20%
Preț: 1401.84 lei - 20%
Preț: 945.50 lei - 20%
Preț: 953.88 lei - 20%
Preț: 1007.77 lei - 20%
Preț: 1415.81 lei - 20%
Preț: 957.51 lei - 20%
Preț: 642.36 lei
Preț: 325.61 lei
Preț vechi: 407.00 lei
-20% Nou
Puncte Express: 488
Preț estimativ în valută:
57.61€ • 67.12$ • 50.31£
57.61€ • 67.12$ • 50.31£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461417699
ISBN-10: 1461417694
Pagini: 300
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.59 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
ISBN-10: 1461417694
Pagini: 300
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.59 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
Public țintă
Professional/practitionerCuprins
What’s in an evolved name? The evolution of modularity via tag-based Reference.- Let the Games Evolve!.- Novelty Search and the Problem with Objectives.- A fine-grained view of phenotypes and locality in genetic programming.- Evolution of an Effective Brain-Computer Interface Mouse via Genetic Programming with Adaptive Tarpeian Bloat Control.- Improved Time Series Prediction and Symbolic Regression with Affine Arithmetic.- Computational Complexity Analysis of Genetic Programming – Initial Results and Future Directions.- Accuracy in Symbolic Regression.- Human-Computer Interaction in a Computational Evolution System for the Genetic Analysis of Cancer.- Baseline Genetic Programming: Symbolic Regression on Benchmarks for Sensory Evaluation Modeling.- Detecting Shadow Economy Sizes With Symbolic Regression.- The Importance of Being Flat – Studying the Program Length Distributions of Operator Equalisation.- FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
Caracteristici
Describes cutting-edge work on genetic programming (GP) theory, applications of GP, and how theory can be used to guide application of GP Demonstrates large-scale applications of GP to a variety of problem domains Reveals an inspiring synergy between GP applications and the latest in theoretical results for state-of –the-art problem solving Addresses symbolic regression as a mode of genetic programming