Cantitate/Preț
Produs

Generalized Linear Models: A Bayesian Perspective: Chapman & Hall/CRC Biostatistics Series

Editat de Dipak K. Dey, Sujit K. Ghosh, Bani K. Mallick
en Limba Engleză Paperback – noi 2019
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Citește tot Restrânge

Din seria Chapman & Hall/CRC Biostatistics Series

Preț: 39880 lei

Preț vechi: 53649 lei
-26%

Puncte Express: 598

Preț estimativ în valută:
7059 8235$ 6112£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367398606
ISBN-10: 0367398605
Pagini: 442
Dimensiuni: 174 x 246 x 28 mm
Greutate: 0.82 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Chapman & Hall/CRC Biostatistics Series


Cuprins

Part 1 Extending the GLMs. Part 2 Categorical and longitudinal data. Part 3 Semiparametric approaches. Part 4 Model diagnositics and value selection in GLMs. Part 5 Challenging problems in GLMs

Notă biografică

Dipak K. Dey, Sujit K. Ghosh , Bani K. Mallick

Descriere

This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.