Fourier Series: A Modern Introduction Volume 2: Graduate Texts in Mathematics, cartea 85
Autor R. E. Edwardsen Limba Engleză Paperback – 18 oct 2011
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei - 15%
Preț: 466.31 lei - 15%
Preț: 395.04 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.35 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei -
Preț: 445.45 lei - 15%
Preț: 388.38 lei -
Preț: 260.78 lei -
Preț: 542.93 lei - 15%
Preț: 576.36 lei -
Preț: 450.27 lei -
Preț: 432.82 lei - 17%
Preț: 396.00 lei -
Preț: 391.02 lei - 15%
Preț: 571.96 lei - 15%
Preț: 569.57 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 374.48 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei -
Preț: 373.03 lei - 15%
Preț: 487.42 lei -
Preț: 444.79 lei - 40%
Preț: 344.12 lei - 15%
Preț: 573.07 lei -
Preț: 372.50 lei -
Preț: 442.58 lei - 18%
Preț: 867.22 lei - 15%
Preț: 561.88 lei - 15%
Preț: 566.14 lei - 15%
Preț: 460.53 lei - 15%
Preț: 575.12 lei -
Preț: 434.17 lei -
Preț: 457.36 lei
Preț: 511.45 lei
Preț vechi: 601.71 lei
-15%
Puncte Express: 767
Preț estimativ în valută:
90.42€ • 107.80$ • 78.42£
90.42€ • 107.80$ • 78.42£
Carte tipărită la comandă
Livrare economică 17-31 martie
Specificații
ISBN-13: 9781461381587
ISBN-10: 1461381584
Pagini: 388
Ilustrații: 369 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:2nd ed. 1982. Softcover reprint of the original 2nd ed. 1982
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461381584
Pagini: 388
Ilustrații: 369 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:2nd ed. 1982. Softcover reprint of the original 2nd ed. 1982
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
11 Spans of Translates. Closed Ideals. Closed Subalgebras. Banach Algebras.- 11.1 Closed Invariant Subspaces and Closed Ideals.- 11.2 The Structure of Closed Ideals and Related Topics.- 11.3 Closed Subalgebras.- 11.4 Banach Algebras and Their Applications.- Exercises.- 12 Distributions and Measures.- 12.1 Concerning C?.- 12.2 Definition and Examples of Distributions and Measures.- 12.3 Convergence of Distributions.- 12.4 Differentiation of Distributions.- 12.5 Fourier Coefficients and Fourier Series of Distributions.- 12.6 Convolutions of Distributions.- 12.7 More about M and Lp.- 12.8 Hilbert’s Distribution and Conjugate Series.- 12.9 The Theorem of Marcel Riesz.- 12.10 Mean Convergence of Fourier Series in LP (1 < p < ?).- 12.11 Pseudomeasures and Their Applications.- 12.12 Capacities and Beurling’s Problem.- 12.13 The Dual Form of Bochner’s Theorem.- Exercises.- 13 Interpolation Theorems.- 13.1 Measure Spaces.- 13.2 Operators of Type (p, q).- 13.3 The Three Lines Theorem.- 13.4 The Riesz-Thorin Theorem.- 13.5 The Theorem of Hausdorff-Young.- 13.6 An Inequality of W. H. Young.- 13.7 Operators of Weak Type.- 13.8 The Marcinkiewicz Interpolation Theorem.- 13.9 Application to Conjugate Functions.- 13.10 Concerning ?*f and s*f.- 13.11 Theorems of Hardy and Littlewood, Marcinkiewicz and Zygmund.- Exercises.- 14 Changing Signs of Fourier Coefficients.- 14.1 Harmonic Analysis on the Cantor Group.- 14.2 Rademacher Series Convergent in L2(?).- 14.3 Applications to Fourier Series.- 14.4 Comments on the Hausdorff-Young Theorem and Its Dual.- 14.5 A Look at Some Dual Results and Generalizations.- Exercises.- 15 Lacunary Fourier Series.- 15.1 Introduction of Sidon Sets.- 15.2 Construction and Examples of Sidon Sets.- 15.3 Further Inequalities Involving Sidon Sets.-15.4 Counterexamples concerning the Parseval Formula and Hausdorff-Young Inequalities.- 15.5 Sets of Type (p, q) and of Type ?(p).- 15.6 Pointwise Convergence and Related Matters.- 15.7 Dual Aspects: Helson Sets.- 15. 8 Other Species of Lacunarity.- Exercises.- 16 Multipliers.- 16.1 Preliminaries.- 16.2 Operators Commuting with Translations and Convolutions; m-operators.- 16.3 Representation Theorems for m-operators.- 16.4 Multipliers of Type (LP, Lq).- 16.15 A Theorem of Kaczmarz—Stein.- 16.6 Banach Algebras Applied to Multipliers.- 16.7 Further Developments.- 16.8 Direct Sum Decompositions and Idempotent Multipliers.- 16.9 Absolute Multipliers.- 16.10 Multipliers of Weak Type (p, p).- Exercises.- Research Publications.- Corrigenda to 2nd (Revised) Edition of Volume 1.- Symbols.