Formation Control of Multiple Autonomous Vehicle Systems
Autor Hugh H T Liu, Bo Zhuen Limba Engleză Hardback – oct 2018
Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems' dynamic behaviour that addresses both individual vehicle's motion and overall group's movement, as well as interactions between vehicles.
The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics.
- Contains uniform coverage of "formation" dynamic systems development
- Presents representative case studies in selected applications in the space, aerial and robotic systems domains
- Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example
- Provides open source example models and simulation codes
- Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field
Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.
Preț: 744.29 lei
Preț vechi: 1123.09 lei
-34% Nou
Puncte Express: 1116
Preț estimativ în valută:
131.68€ • 153.65$ • 115.13£
131.68€ • 153.65$ • 115.13£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781119263067
ISBN-10: 1119263069
Pagini: 272
Dimensiuni: 173 x 246 x 20 mm
Greutate: 0.61 kg
Editura: Wiley
Locul publicării:Chichester, United Kingdom
ISBN-10: 1119263069
Pagini: 272
Dimensiuni: 173 x 246 x 20 mm
Greutate: 0.61 kg
Editura: Wiley
Locul publicării:Chichester, United Kingdom
Public țintă
Tier 3, P&RPrimary: Researchers and academics in robotics and unmanned systems looking at formation problems. These include mechanical engineers, aerospace engineers and electrical engineers. Graduate students in Control within ME, EE, and AE are also a target as a supplemental publication.
Secondary: Industry engineers developing guidance systems for formation control systems and graduate students in mechanical, electrical, and aerospace engineering.
Notă biografică
Hugh H. T. Liu is a Professor at the University of Toronto Institute for Aerospace Studies (UTIAS), Canada. His research work has included a number of aircraft systems and control related areas. Professor Liu has made significant research contributions in autonomous unmanned systems. Bo Zhu is an Associate Professor at the School of Aeronautics and Astronautics, University of Electronic Science and Technology of China (UESTC). His research work has included a number of aircraft systems and control related areas.