Figures of Thought: Mathematics and Mathematical Texts
Autor David Reeden Limba Engleză Hardback – dec 1994
David Reed, a professional mathematician himself, offers the first sustained and critical attempt to find a consistent argument or narrative thread in mathematical texts. In doing so he develops new and fascinating interpretations of mathematicians' work throughout history, from an in-depth analysis of Euclid's Elements, to the mathematics of Descartes and right up to the work of contemporary mathematicians such as Grothendeick. He also traces the implications of this approach to the understanding of the history and development of mathematics.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 408.88 lei 6-8 săpt. | |
| Taylor & Francis – 25 oct 2013 | 408.88 lei 6-8 săpt. | |
| Hardback (1) | 1063.81 lei 6-8 săpt. | |
| Taylor & Francis – dec 1994 | 1063.81 lei 6-8 săpt. |
Preț: 1063.81 lei
Preț vechi: 1297.33 lei
-18%
Puncte Express: 1596
Preț estimativ în valută:
188.06€ • 224.23$ • 163.12£
188.06€ • 224.23$ • 163.12£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9780415081467
ISBN-10: 0415081467
Pagini: 208
Dimensiuni: 138 x 216 x 20 mm
Greutate: 0.39 kg
Ediția:New.
Editura: Taylor & Francis
Colecția Routledge
Locul publicării:Oxford, United Kingdom
ISBN-10: 0415081467
Pagini: 208
Dimensiuni: 138 x 216 x 20 mm
Greutate: 0.39 kg
Ediția:New.
Editura: Taylor & Francis
Colecția Routledge
Locul publicării:Oxford, United Kingdom
Recenzii
'A remarkably wide-ranging discussion of the language, aims, and methods of geometry from Greek antiquity, via Descartes, up to Weil, Grothendeick, and beyond.' - David Fowler, University of Warwick
Cuprins
Preface Introduction Part I: The Subject Matter of Geometry in Euclid, Descartes and Hilbert 1. The Opening of The Elements 2. Propositions and Proofs - Theorems and Problems Part II 1. The Contexts of Measurement 2. Number Theory in the 19th Century Appendix Part III Introduction 1. Types of Wholes 2. Generality in Contemporary Mathematics Conclusion
Descriere
Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.