Econometric Analysis of Financial and Economic Time Series: Advances in Econometrics
Autor Thomas B. Fomby, Dek Terrell, R. Carter Hillen Limba Engleză Hardback – 28 feb 2006
*This Series: Aids in the diffusion of new econometric techniques
* Emphasis is placed on expositional clarity and ease of assimilation for readers who are unfamiliar with a given topic of a volume
*Illustrates new concepts
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (2) | 880.36 lei 6-8 săpt. | |
| Emerald Publishing – 31 ian 2006 | 880.36 lei 6-8 săpt. | |
| Emerald Publishing – 28 feb 2006 | 882.22 lei 6-8 săpt. |
Din seria Advances in Econometrics
- 9%
Preț: 867.19 lei - 23%
Preț: 752.17 lei - 23%
Preț: 853.58 lei - 23%
Preț: 880.36 lei - 23%
Preț: 753.01 lei - 23%
Preț: 875.08 lei - 23%
Preț: 891.53 lei - 23%
Preț: 943.60 lei - 23%
Preț: 999.23 lei - 23%
Preț: 1020.53 lei - 23%
Preț: 987.28 lei - 23%
Preț: 1288.85 lei - 23%
Preț: 1330.57 lei - 23%
Preț: 1260.58 lei - 23%
Preț: 1185.67 lei - 23%
Preț: 1324.84 lei - 23%
Preț: 1258.84 lei - 19%
Preț: 659.16 lei - 23%
Preț: 805.84 lei - 19%
Preț: 631.89 lei - 23%
Preț: 805.26 lei - 23%
Preț: 800.60 lei - 23%
Preț: 1147.62 lei - 23%
Preț: 878.44 lei - 23%
Preț: 833.57 lei - 23%
Preț: 787.58 lei - 23%
Preț: 938.12 lei - 31%
Preț: 1007.72 lei
Preț: 882.22 lei
Preț vechi: 1145.73 lei
-23% Nou
Puncte Express: 1323
Preț estimativ în valută:
156.11€ • 183.06$ • 137.10£
156.11€ • 183.06$ • 137.10£
Carte tipărită la comandă
Livrare economică 03-17 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780762312740
ISBN-10: 0762312742
Pagini: 408
Dimensiuni: 155 x 234 x 584 mm
Greutate: 0.71 kg
Editura: Emerald Publishing
Seria Advances in Econometrics
ISBN-10: 0762312742
Pagini: 408
Dimensiuni: 155 x 234 x 584 mm
Greutate: 0.71 kg
Editura: Emerald Publishing
Seria Advances in Econometrics
Public țintă
EconomistsCuprins
Introduction (D. Terrell, T. Fomby). Remarks (R. Engle, C. Granger)
Part I: Multivariate volatility models.
A flexible dynamic correlation model (D. Baur). A multivariate skew-garch model (G. De Luca, M. Genton, N. Loperfido). Semi-parametric modelling of correlation dynamics (C. Hafner, Dick Van Dijk, P. H. Franses). A multivariate heavy-tailed distribution for arch/garch residuals (D. Politis). A portmanteau test for multivariate garch when the conditional mean is ECM: Theory and empirical applications (C. –Y. sin).
Part II: highfrequency volatility models.
Sampling frequency and window length trade-offs in data-driven volatility estimation: appraising the accuracy of asymptotic approximations (E. Andreou, E. Ghysels). Model-based measurement of actual volatility in highfrequency data (B. Jungacker, s. J. Koopman). Noise reduced realized volatility: a kalman filter approach (J. Owens, D. Steigerwald).
Part III: Univariate volatility models.
Modeling the asymmetry of stock movements using price ranges (R. Chou). On a simple two-stage closed-form estimator for a stochastic volatility in a general linear regression (J.-M. Dufour, P. Valéry). The student’s t dynamic linear regression: Re-examining volatility modelling (M. Heracleous, a. spanos). arch models for multi-period forecast uncertainty – a reality check using a panel of density forecasts (K. Lahiri, F. Liu). Necessary and sufficient restrictions for existence of a unique fourth moment of a univariate garch (P,Q) Process (P. Zadrozny).
Part I: Multivariate volatility models.
A flexible dynamic correlation model (D. Baur). A multivariate skew-garch model (G. De Luca, M. Genton, N. Loperfido). Semi-parametric modelling of correlation dynamics (C. Hafner, Dick Van Dijk, P. H. Franses). A multivariate heavy-tailed distribution for arch/garch residuals (D. Politis). A portmanteau test for multivariate garch when the conditional mean is ECM: Theory and empirical applications (C. –Y. sin).
Part II: highfrequency volatility models.
Sampling frequency and window length trade-offs in data-driven volatility estimation: appraising the accuracy of asymptotic approximations (E. Andreou, E. Ghysels). Model-based measurement of actual volatility in highfrequency data (B. Jungacker, s. J. Koopman). Noise reduced realized volatility: a kalman filter approach (J. Owens, D. Steigerwald).
Part III: Univariate volatility models.
Modeling the asymmetry of stock movements using price ranges (R. Chou). On a simple two-stage closed-form estimator for a stochastic volatility in a general linear regression (J.-M. Dufour, P. Valéry). The student’s t dynamic linear regression: Re-examining volatility modelling (M. Heracleous, a. spanos). arch models for multi-period forecast uncertainty – a reality check using a panel of density forecasts (K. Lahiri, F. Liu). Necessary and sufficient restrictions for existence of a unique fourth moment of a univariate garch (P,Q) Process (P. Zadrozny).