Dynamic Stochastic Optimization
Editat de Kurt Marti, Yuri Ermoliev, Georg Ch. Pflugen Limba Engleză Paperback – 29 oct 2003
Preț: 619.51 lei
Preț vechi: 728.84 lei
-15% Nou
Puncte Express: 929
Preț estimativ în valută:
109.61€ • 127.89$ • 95.83£
109.61€ • 127.89$ • 95.83£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540405061
ISBN-10: 3540405062
Pagini: 348
Ilustrații: VIII, 336 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.53 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540405062
Pagini: 348
Ilustrații: VIII, 336 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.53 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Dynamic Decision Problems under Uncertainty: Modeling Aspects.- Reflections on Output Analysis for Multistage Stochastic Linear Programs.- Modeling Support for Multistage Recourse Problems.- Optimal Solutions for Undiscounted Variance Penalized Markov Decision Chains.- Approximation and Optimization for Stochastic Networks.- II. Dynamic Stochastic Optimization in Finance.- Optimal Stopping Problem and Investment Models.- Estimating LIBOR/Swaps Spot-Volatilities: the EpiVolatility Model.- Structured Products for Pension Funds.- III. Optimal Control Under Stochastic Uncertainty.- Real-time Robust Optimal Trajectory Planning of Industrial Robots.- Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) for Robots.- IV. Tools for Dynamic Stochastic Optimization.- Solving Stochastic Programming Problems by Successive Regression Approximations — Numerical Results.- Stochastic Optimization of Risk Functions via Parametric Smoothing.- Optimization under Uncertainty using Momentum.- Perturbation Analysis of Chance-constrained Programs under Variation of all Constraint Data.- The Value of Perfect Information as a Risk Measure.- New Bounds and Approximations for the Probability Distribution of the Length of the Critical Path.- Simplification of Recourse Models by Modification of Recourse Data.
Caracteristici
Includes supplementary material: sn.pub/extras