Discrete Subgroups of Semisimple Lie Groups: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 17
Autor Gregori A. Margulisen Limba Engleză Paperback – 19 oct 2010
Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
- 18%
Preț: 1018.37 lei -
Preț: 386.36 lei - 18%
Preț: 756.21 lei -
Preț: 381.02 lei - 18%
Preț: 869.46 lei - 18%
Preț: 986.70 lei - 18%
Preț: 1080.31 lei - 18%
Preț: 1078.93 lei - 18%
Preț: 1071.25 lei - 18%
Preț: 913.11 lei - 24%
Preț: 1637.01 lei - 18%
Preț: 866.91 lei - 18%
Preț: 764.06 lei - 18%
Preț: 766.00 lei - 24%
Preț: 804.41 lei -
Preț: 374.54 lei - 24%
Preț: 1332.13 lei - 15%
Preț: 626.20 lei - 18%
Preț: 702.99 lei - 18%
Preț: 753.32 lei - 18%
Preț: 1180.66 lei - 18%
Preț: 870.23 lei -
Preț: 373.76 lei -
Preț: 372.31 lei - 18%
Preț: 1078.01 lei - 18%
Preț: 863.10 lei -
Preț: 382.30 lei - 18%
Preț: 875.70 lei - 18%
Preț: 1186.28 lei - 18%
Preț: 763.03 lei -
Preț: 378.95 lei - 18%
Preț: 1072.38 lei - 15%
Preț: 506.57 lei - 18%
Preț: 909.08 lei - 18%
Preț: 1077.40 lei - 18%
Preț: 1346.41 lei - 18%
Preț: 1188.99 lei - 18%
Preț: 753.32 lei - 15%
Preț: 673.23 lei - 18%
Preț: 1071.78 lei
Preț: 758.35 lei
Preț vechi: 924.82 lei
-18% Nou
Puncte Express: 1138
Preț estimativ în valută:
134.21€ • 157.40$ • 117.68£
134.21€ • 157.40$ • 117.68£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642057212
ISBN-10: 3642057217
Pagini: 404
Ilustrații: IX, 390 p.
Dimensiuni: 170 x 242 x 21 mm
Greutate: 0.64 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642057217
Pagini: 404
Ilustrații: IX, 390 p.
Dimensiuni: 170 x 242 x 21 mm
Greutate: 0.64 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Statement of Main Results.- 2. Synopsis of the Chapters.- 3. Remarks on the Structure of the Book, References and Notation.- 1. Preliminaries.- 0. Notation, Terminology and Some Basic Facts.- 1. Algebraic Groups Over Arbitrary Fields.- 2. Algebraic Groups Over Local Fields.- 3. Arithmetic Groups.- 4. Measure Theory and Ergodic Theory.- 5. Unitary Representations and Amenable Groups.- II. Density and Ergodicity Theorems.- 1. Iterations of Linear Transformations.- 2. Density Theorems for Subgroups with Property (S)I.- 3. The Generalized Mautner Lemma and the Lebesgue Spectrum.- 4. Density Theorems for Subgroups with Property (S)II.- 5. Non-Discrete Closed Subgroups of Finite Covolume.- 6. Density of Projections and the Strong Approximation Theorem.- 7. Ergodicity of Actions on Quotient Spaces.- III. Property (T).- 1. Representations Which Are Isolated from the Trivial One-Dimensional Representation.- 2. Property (T) and Some of Its Consequences. Relationship Between Property (T) for Groups and for Their Subgroups.- 3. Property (T) and Decompositions of Groups into Amalgams.- 4. Property (R).- 5. Semisimple Groups with Property (T).- 6. Relationship Between the Structure of Closed Subgroups and Property (T) of Normal Subgroups.- IV. Factor Groups of Discrete Subgroups.- 1. b-metrics, Vitali’s Covering Theorem and the Density Point Theorem.- 2. Invariant Algebras of Measurable Sets.- 3. Amenable Factor Groups of Lattices Lying in Direct Products.- 4. Finiteness of Factor Groups of Discrete Subgroups.- V. Characteristic Maps.- 1. Auxiliary Assertions.- 2. The Multiplicative Ergodic Theorem.- 3. Definition and Fundamental Properties of Characteristic Maps.- 4. Effective Pairs.- 5. Essential Pairs.- VI. Discrete Subgroups and Boundary Theory.- 1. Proximal G-Spaces and Boundaries.- 2. ?-Boundaries.- 3. Projective G-Spaces.- 4. Equivariant Measurable Maps to Algebraic Varieties.- VII. Rigidity.- 1. Auxiliary Assertions.- 2. Cocycles on G-Spaces.- 3. Finite-Dimensional Invariant Subspaces.- 4. Equivariant Measurable Maps and Continuous Extensions of Representations.- 5. Superrigidity (Continuous Extensions of Homomorphisms of Discrete Subgroups to Algebraic Groups Over Local Fields).- 6. Homomorphisms of Discrete Subgroups to Algebraic Groups Over Arbitrary Fields.- 7. Strong Rigidity (Continuous Extensions of Isomorphisms of Discrete Subgroups).- 8. Rigidity of Ergodic Actions of Semisimple Groups.- VIII. Normal Subgroups and “Abstract” Homomorphisms of Semisimple Algebraic Groups Over Global Fields.- 1. Some Properties of Fundamental Domains for S-Arithmetic Subgroups.- 2. Finiteness of Factor Groups of S-Arithmetic Subgroups.- 3. Homomorphisms of S-Arithmetic Subgroups to Algebraic Groups.- IX. Arithmeticity.- 1. Statement of the Arithmeticity Theorems.- 2. Proof of the Arithmeticity Theorems.- 3. Finite Generation of Lattices.- 4. Consequences of the Arithmeticity Theorems I.- 5. Consequences of the Arithmeticity Theorems II.- 6. Arithmeticity, Volume of Quotient Spaces, Finiteness of Factor Groups, and Superrigidity of Lattices in Semisimple Lie Groups.- 7. Applications to the Theory of Symmetric Spaces and Theory of Complex Manifolds.- Appendices.- A. Proof of the Multiplicative Ergodic Theorem.- B. Free Discrete Subgroups of Linear Groups.- C. Examples of Non-Arithmetic Lattices.- Historical and Bibliographical Notes.- References.