Constructible Sets in Real Geometry: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 33
Autor Carlos Andradas, Ludwig Bröcker, Jesus M. Ruizen Limba Engleză Paperback – 14 dec 2011
Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
- 18%
Preț: 1018.37 lei -
Preț: 386.36 lei - 18%
Preț: 756.21 lei -
Preț: 374.54 lei - 24%
Preț: 1332.13 lei - 15%
Preț: 626.20 lei - 18%
Preț: 702.99 lei - 18%
Preț: 753.32 lei - 18%
Preț: 1180.66 lei - 18%
Preț: 758.35 lei - 18%
Preț: 870.23 lei -
Preț: 373.76 lei -
Preț: 372.31 lei - 18%
Preț: 1078.01 lei - 18%
Preț: 863.10 lei -
Preț: 382.30 lei - 18%
Preț: 875.70 lei - 18%
Preț: 1186.28 lei - 18%
Preț: 763.03 lei -
Preț: 378.95 lei - 18%
Preț: 1072.38 lei - 18%
Preț: 909.08 lei - 18%
Preț: 1077.40 lei - 18%
Preț: 1346.41 lei - 18%
Preț: 1188.99 lei - 18%
Preț: 753.32 lei - 15%
Preț: 673.23 lei - 18%
Preț: 1071.78 lei - 18%
Preț: 1072.85 lei - 15%
Preț: 630.46 lei - 18%
Preț: 1075.27 lei - 18%
Preț: 914.83 lei - 18%
Preț: 922.11 lei - 15%
Preț: 615.66 lei - 18%
Preț: 1073.76 lei - 18%
Preț: 864.61 lei - 18%
Preț: 909.37 lei
Preț: 506.57 lei
Preț vechi: 595.97 lei
-15% Nou
Puncte Express: 760
Preț estimativ în valută:
89.63€ • 104.42$ • 78.27£
89.63€ • 104.42$ • 78.27£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642800269
ISBN-10: 3642800262
Pagini: 284
Ilustrații: IX, 270 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642800262
Pagini: 284
Ilustrații: IX, 270 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. A First Look at Semialgebraic Geometry.- 1. Real Closed Fields and Transfer Principles.- 2. What is Semialgebraic Geometry?.- 3. Real Spaces.- 4. Examples.- II. Real Algebra.- 1. The Real Spectrum of a Ring.- 2. Specializations, Zero Sets and Real Ideals.- 3. Real Valuations.- 4. Real Going-Up and Real Going-Down.- 5. Abstract Semialgebraic Functions.- 6. Cylindrical Decomposition.- 7. Real Strict Localization.- Notes.- III. Spaces of Signs.- 1. The Axioms.- 2. Forms.- 3. SAP-Spaces and Fans.- 4. Local Spaces of Signs.- 5. The Space of Signs of a Ring.- 6. Subspaces.- Notes.- IV. Spaces of Orderings.- 1. The Axioms Revisited.- 2. Basic Constructions.- 3. Spaces of Finite Type.- 4. Spaces of Finite Chain Length.- 5. Finite Type = Finite Chain Length.- 6. Local-Global Principles.- 7. Representation Theorem and Invariants.- Notes.- V. The Main Results.- 1. Stability Formulae.- 2. Complexity of Constructible Sets.- 3. Separation.- 4. Real Divisors.- 5. The Artin-Lang Property.- Notes.- VI. Spaces of Signs of Rings.- 1. Fans and Valuations.- 2. Field Extensions: Upper Bounds.- 3. Field Extensions: Lower Bounds.- 4. Algebras.- 5. Algebras Finitely Generated over Fields.- 6. Archimedean Rings.- 7. Coming Back to Geometry.- Notes.- VII. Real Algebra of Excellent Rings.- 1. Regular Homomorphisms.- 2. Excellent Rings.- 3. Extension of Orderings Under Completion.- 4. Curve Selection Lemma.- 5. Dimension, Valuations and Fans.- 6. Closures of Constructible Sets.- 7. Real Going-down for Regular Homomorphisms.- 8. Connected Components of Constructible Sets.- Notes.- VIII. Real Analytic Geometry.- 1. Semianalytic Sets.- 2. Semianalytic Set Germs.- 3. Cylindrical Decomposition of Germs.- 4. Rings of Global Analytic Functions.- 5. Hilbert’s 17th Problem and Real Nullstellensatz.- 6.Minimal Generation of Global Semianalytic Sets.- 7. Topology of Global Semianalytic Sets.- 8. Germs at Compact Sets.- Notes.