Derived Functors in Functional Analysis
Autor Jochen Wengenrothen Limba Engleză Paperback – 10 dec 2002
The requirements from homological algebra are minimized: all one needs is summarized on a few pages. The answers to several questions of V.P. Palamodov who invented homological methods in analysis also show the limits of the program.
Preț: 333.87 lei
Nou
Puncte Express: 501
Preț estimativ în valută:
59.07€ • 68.82$ • 51.58£
59.07€ • 68.82$ • 51.58£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540002369
ISBN-10: 3540002367
Pagini: 148
Ilustrații: X, 138 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.24 kg
Ediția:2003
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540002367
Pagini: 148
Ilustrații: X, 138 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.24 kg
Ediția:2003
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Introduction.- Notions from homological algebra: Derived Functors; The category of locally convex spaces.- The projective limit functor for countable spectra: Projective limits of linear spaces; The Mittag-Leffler procedure; Projective limits of locally convex spaces; Some Applications: The Mittag-Leffler theorem; Separating singularities; Surjectivity of the Cauchy-Riemann operator; Surjectivity of P(D) on spaces of smooth functions; Surjectivity of P(D) the space of distributions; Differential operators for ultradifferentiable functions of Roumieu type.- Uncountable projective spectra: Projective spectra of linear spaces; Insertion: The completion functor; Projective spectra of locally convex spaces.- The derived functors of Hom: Extk in the category of locally convex spaces; Splitting theory for Fréchet spaces; Splitting in the category of (PLS)-spaces.- Inductive spectra of locally convex spaces.- The duality functor.- References.- Index.
Caracteristici
Includes supplementary material: sn.pub/extras