Deep Learning: A Comprehensive Guide
Autor Shriram K Vasudevan, Sini Raj Pulari, Subashri Vasudevanen Limba Engleză Hardback – 21 dec 2021
Key Features
- Includes the smooth transition from ML concepts to DL concepts
- Line-by-line explanations have been provided for all the coding-based examples
- Includes a lot of real-time examples and interview questions that will prepare the reader to take up a job in ML/DL right away
- Even a person with a non-computer-science background can benefit from this book by following the theory, examples, case studies, and code snippets
- Every chapter starts with the objective and ends with a set of quiz questions to test the reader’s understanding
- Includes references to the related YouTube videos that provide additional guidance
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 407.87 lei 43-57 zile | |
| CRC Press – 4 oct 2024 | 407.87 lei 43-57 zile | |
| Hardback (1) | 900.69 lei 43-57 zile | |
| CRC Press – 21 dec 2021 | 900.69 lei 43-57 zile |
Preț: 900.69 lei
Preț vechi: 1125.86 lei
-20% Nou
Puncte Express: 1351
Preț estimativ în valută:
159.38€ • 186.89$ • 139.97£
159.38€ • 186.89$ • 139.97£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032028828
ISBN-10: 1032028823
Pagini: 306
Ilustrații: 178 Line drawings, black and white; 83 Halftones, black and white; 19 Tables, black and white; 261 Illustrations, black and white
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.61 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
ISBN-10: 1032028823
Pagini: 306
Ilustrații: 178 Line drawings, black and white; 83 Halftones, black and white; 19 Tables, black and white; 261 Illustrations, black and white
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.61 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Public țintă
Postgraduate, Professional, and Undergraduate AdvancedCuprins
1. Introduction to Deep Learning. 2. The Tools and Prerequisites. 3. Machine Learning: The Fundamentals 4. The Deep Learning Framework. 5. CNN– Convolutional Neural Networks – A Complete Understanding. 6. CNN Architectures – An Evolution 7. Recurrent Neural Networks. 8. Autoencoders. 9. Generative Models. 10. Transfer Learning. 11. Intel OpenVino – A Must Know Deep Learning Toolkit. 12. Interview Questions and Answers.
Descriere
This book focuses on all the relevant topics of Deep Learning. It covers the conceptual, mathematical and practical aspects of deep learning & offers real time practical examples & case studies. It is aimed primarily at graduates, researchers and professionals working in Deep Learning.