Classical Topology and Combinatorial Group Theory
Autor John Stillwellen Limba Engleză Hardback – 25 mar 1993
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 437.17 lei 17-24 zile | +39.66 lei 7-13 zile |
| Springer – oct 2011 | 437.17 lei 17-24 zile | +39.66 lei 7-13 zile |
| Hardback (1) | 617.96 lei 38-45 zile | |
| Springer – 25 mar 1993 | 617.96 lei 38-45 zile |
Preț: 617.96 lei
Preț vechi: 762.91 lei
-19% Nou
Puncte Express: 927
Preț estimativ în valută:
109.33€ • 127.57$ • 95.59£
109.33€ • 127.57$ • 95.59£
Carte tipărită la comandă
Livrare economică 12-19 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387979700
ISBN-10: 0387979700
Pagini: 352
Ilustrații: XII, 336 p.
Dimensiuni: 160 x 241 x 24 mm
Greutate: 0.69 kg
Ediția:Second Edition 1993
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387979700
Pagini: 352
Ilustrații: XII, 336 p.
Dimensiuni: 160 x 241 x 24 mm
Greutate: 0.69 kg
Ediția:Second Edition 1993
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
0 Introduction and Foundations.- 0.1 The Fundamental Concepts and Problems of Topology.- 0.2 Simplicial Complexes.- 0.3 The Jordan Curve Theorem.- 0.4 Algorithms.- 0.5 Combinatorial Group Theory.- 1 Complex Analysis and Surface Topology.- 1.1 Riemann Surfaces.- 1.2 Nonorientable Surfaces.- 1.3 The Classification Theorem for Surfaces.- 1.4 Covering Surfaces.- 2 Graphs and Free Groups.- 2.1 Realization of Free Groups by Graphs.- 2.2 Realization of Subgroups.- 3 Foundations for the Fundamental Group.- 3.1 The Fundamental Group.- 3.2 The Fundamental Group of the Circle.- 3.3 Deformation Retracts.- 3.4 The Seifert—Van Kampen Theorem.- 3.5 Direct Products.- 4 Fundamental Groups of Complexes.- 4.1 Poincaré’s Method for Computing Presentations.- 4.2 Examples.- 4.3 Surface Complexes and Subgroup Theorems.- 5 Homology Theory and Abelianization.- 5.1 Homology Theory.- 5.2 The Structure Theorem for Finitely Generated Abelian Groups.- 5.3 Abelianization.- 6 Curves on Surfaces.- 6.1 Dehn’s Algorithm.- 6.2 Simple Curves on Surfaces.- 6.3 Simplification of Simple Curves by Homeomorphisms.- 6.4 The Mapping Class Group of the Torus.- 7 Knots and Braids.- 7.1 Dehn and Schreier’s Analysis of the Torus Knot Groups.- 7.2 Cyclic Coverings.- 7.3 Braids.- 8 Three-Dimensional Manifolds.- 8.1 Open Problems in Three-Dimensional Topology.- 8.2 Polyhedral Schemata.- 8.3 Heegaard Splittings.- 8.4 Surgery.- 8.5 Branched Coverings.- 9 Unsolvable Problems.- 9.1 Computation.- 9.2 HNN Extensions.- 9.3 Unsolvable Problems in Group Theory.- 9.4 The Homeomorphism Problem.- Bibliography and Chronology.